Akksay Singh, Jiaqi Wang, Graeme Henkelman, Lei Li
{"title":"基于不确定性的机器学习-DFT 混合框架,用于加速几何优化。","authors":"Akksay Singh, Jiaqi Wang, Graeme Henkelman, Lei Li","doi":"10.1021/acs.jctc.4c00953","DOIUrl":null,"url":null,"abstract":"<p><p>Geometry optimization is an important tool used for computational simulations in the fields of chemistry, physics, and material science. Developing more efficient and reliable algorithms to reduce the number of force evaluations would lead to accelerated computational modeling and materials discovery. Here, we present a delta method-based neural network-density functional theory (DFT) hybrid optimizer to improve the computational efficiency of geometry optimization. Compared to previous active learning approaches, our algorithm adds two key features: a modified delta method incorporating force information to enhance efficiency in uncertainty estimation, and a quasi-Newton approach based upon a Hessian matrix calculated from the neural network; the later improving stability of optimization near critical points. We benchmarked our optimizer against commonly used optimization algorithms using systems including bulk metal, metal surface, metal hydride, and an oxide cluster. The results demonstrate that our optimizer effectively reduces the number of DFT force calls by 2-3 times in all test systems.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Based Machine Learning-DFT Hybrid Framework for Accelerating Geometry Optimization.\",\"authors\":\"Akksay Singh, Jiaqi Wang, Graeme Henkelman, Lei Li\",\"doi\":\"10.1021/acs.jctc.4c00953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Geometry optimization is an important tool used for computational simulations in the fields of chemistry, physics, and material science. Developing more efficient and reliable algorithms to reduce the number of force evaluations would lead to accelerated computational modeling and materials discovery. Here, we present a delta method-based neural network-density functional theory (DFT) hybrid optimizer to improve the computational efficiency of geometry optimization. Compared to previous active learning approaches, our algorithm adds two key features: a modified delta method incorporating force information to enhance efficiency in uncertainty estimation, and a quasi-Newton approach based upon a Hessian matrix calculated from the neural network; the later improving stability of optimization near critical points. We benchmarked our optimizer against commonly used optimization algorithms using systems including bulk metal, metal surface, metal hydride, and an oxide cluster. The results demonstrate that our optimizer effectively reduces the number of DFT force calls by 2-3 times in all test systems.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00953\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00953","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Uncertainty Based Machine Learning-DFT Hybrid Framework for Accelerating Geometry Optimization.
Geometry optimization is an important tool used for computational simulations in the fields of chemistry, physics, and material science. Developing more efficient and reliable algorithms to reduce the number of force evaluations would lead to accelerated computational modeling and materials discovery. Here, we present a delta method-based neural network-density functional theory (DFT) hybrid optimizer to improve the computational efficiency of geometry optimization. Compared to previous active learning approaches, our algorithm adds two key features: a modified delta method incorporating force information to enhance efficiency in uncertainty estimation, and a quasi-Newton approach based upon a Hessian matrix calculated from the neural network; the later improving stability of optimization near critical points. We benchmarked our optimizer against commonly used optimization algorithms using systems including bulk metal, metal surface, metal hydride, and an oxide cluster. The results demonstrate that our optimizer effectively reduces the number of DFT force calls by 2-3 times in all test systems.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.