{"title":"真菌甲壳素纳米纤维改善了羧甲基纤维素和聚乙烯吡咯烷酮薄膜的机械性能和抗紫外线性能。","authors":"Madalen Azpitarte Aretxabaleta, Gotzone Barandika, Rikardo Minguez, Erlantz Lizundia","doi":"10.1021/acs.biomac.4c00846","DOIUrl":null,"url":null,"abstract":"<p><p>Materials from renewable carbon feedstock can limit our dependence on fossil carbon and facilitate the transition from linear carbon-intensive economies to sustainable, circular economies. Chitin nanofibrils (ChNFs) isolated from white mushrooms offer remarkable environmental benefits over conventional crustacean-derived nanochitin. Herein, ChNFs are utilized to reinforce polymers of natural and fossil origin, carboxymethyl cellulose (CMC) and polyvinylpyrrolidone (PVP), respectively. Incorporation of 5 wt % ChNFs increases the Young's modulus from 1217 ± 11 to 1509 ± 22 MPa for PVP and from 1979 ± 48 to 2216 ± 102 MPa for CMC. ChNFs increase surface hydrophobicity and retard the scission of the C-H bond as a result of UV-light irradiation in both polymers under investigation. The yellowing from chain scission is reduced, while long-lasting retention of ductility is ensured. Given these results, we propose the utilization of ChNFs in sustainable polymeric materials from renewable carbon with competitive performance against fossil-based benchmark plastics.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungal Chitin Nanofibrils Improve Mechanical Performance and UV-Light Resistance in Carboxymethylcellulose and Polyvinylpyrrolidone Films.\",\"authors\":\"Madalen Azpitarte Aretxabaleta, Gotzone Barandika, Rikardo Minguez, Erlantz Lizundia\",\"doi\":\"10.1021/acs.biomac.4c00846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Materials from renewable carbon feedstock can limit our dependence on fossil carbon and facilitate the transition from linear carbon-intensive economies to sustainable, circular economies. Chitin nanofibrils (ChNFs) isolated from white mushrooms offer remarkable environmental benefits over conventional crustacean-derived nanochitin. Herein, ChNFs are utilized to reinforce polymers of natural and fossil origin, carboxymethyl cellulose (CMC) and polyvinylpyrrolidone (PVP), respectively. Incorporation of 5 wt % ChNFs increases the Young's modulus from 1217 ± 11 to 1509 ± 22 MPa for PVP and from 1979 ± 48 to 2216 ± 102 MPa for CMC. ChNFs increase surface hydrophobicity and retard the scission of the C-H bond as a result of UV-light irradiation in both polymers under investigation. The yellowing from chain scission is reduced, while long-lasting retention of ductility is ensured. Given these results, we propose the utilization of ChNFs in sustainable polymeric materials from renewable carbon with competitive performance against fossil-based benchmark plastics.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c00846\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00846","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Fungal Chitin Nanofibrils Improve Mechanical Performance and UV-Light Resistance in Carboxymethylcellulose and Polyvinylpyrrolidone Films.
Materials from renewable carbon feedstock can limit our dependence on fossil carbon and facilitate the transition from linear carbon-intensive economies to sustainable, circular economies. Chitin nanofibrils (ChNFs) isolated from white mushrooms offer remarkable environmental benefits over conventional crustacean-derived nanochitin. Herein, ChNFs are utilized to reinforce polymers of natural and fossil origin, carboxymethyl cellulose (CMC) and polyvinylpyrrolidone (PVP), respectively. Incorporation of 5 wt % ChNFs increases the Young's modulus from 1217 ± 11 to 1509 ± 22 MPa for PVP and from 1979 ± 48 to 2216 ± 102 MPa for CMC. ChNFs increase surface hydrophobicity and retard the scission of the C-H bond as a result of UV-light irradiation in both polymers under investigation. The yellowing from chain scission is reduced, while long-lasting retention of ductility is ensured. Given these results, we propose the utilization of ChNFs in sustainable polymeric materials from renewable carbon with competitive performance against fossil-based benchmark plastics.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.