真菌甲壳素纳米纤维改善了羧甲基纤维素和聚乙烯吡咯烷酮薄膜的机械性能和抗紫外线性能。

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Madalen Azpitarte Aretxabaleta, Gotzone Barandika, Rikardo Minguez, Erlantz Lizundia
{"title":"真菌甲壳素纳米纤维改善了羧甲基纤维素和聚乙烯吡咯烷酮薄膜的机械性能和抗紫外线性能。","authors":"Madalen Azpitarte Aretxabaleta, Gotzone Barandika, Rikardo Minguez, Erlantz Lizundia","doi":"10.1021/acs.biomac.4c00846","DOIUrl":null,"url":null,"abstract":"<p><p>Materials from renewable carbon feedstock can limit our dependence on fossil carbon and facilitate the transition from linear carbon-intensive economies to sustainable, circular economies. Chitin nanofibrils (ChNFs) isolated from white mushrooms offer remarkable environmental benefits over conventional crustacean-derived nanochitin. Herein, ChNFs are utilized to reinforce polymers of natural and fossil origin, carboxymethyl cellulose (CMC) and polyvinylpyrrolidone (PVP), respectively. Incorporation of 5 wt % ChNFs increases the Young's modulus from 1217 ± 11 to 1509 ± 22 MPa for PVP and from 1979 ± 48 to 2216 ± 102 MPa for CMC. ChNFs increase surface hydrophobicity and retard the scission of the C-H bond as a result of UV-light irradiation in both polymers under investigation. The yellowing from chain scission is reduced, while long-lasting retention of ductility is ensured. Given these results, we propose the utilization of ChNFs in sustainable polymeric materials from renewable carbon with competitive performance against fossil-based benchmark plastics.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungal Chitin Nanofibrils Improve Mechanical Performance and UV-Light Resistance in Carboxymethylcellulose and Polyvinylpyrrolidone Films.\",\"authors\":\"Madalen Azpitarte Aretxabaleta, Gotzone Barandika, Rikardo Minguez, Erlantz Lizundia\",\"doi\":\"10.1021/acs.biomac.4c00846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Materials from renewable carbon feedstock can limit our dependence on fossil carbon and facilitate the transition from linear carbon-intensive economies to sustainable, circular economies. Chitin nanofibrils (ChNFs) isolated from white mushrooms offer remarkable environmental benefits over conventional crustacean-derived nanochitin. Herein, ChNFs are utilized to reinforce polymers of natural and fossil origin, carboxymethyl cellulose (CMC) and polyvinylpyrrolidone (PVP), respectively. Incorporation of 5 wt % ChNFs increases the Young's modulus from 1217 ± 11 to 1509 ± 22 MPa for PVP and from 1979 ± 48 to 2216 ± 102 MPa for CMC. ChNFs increase surface hydrophobicity and retard the scission of the C-H bond as a result of UV-light irradiation in both polymers under investigation. The yellowing from chain scission is reduced, while long-lasting retention of ductility is ensured. Given these results, we propose the utilization of ChNFs in sustainable polymeric materials from renewable carbon with competitive performance against fossil-based benchmark plastics.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c00846\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00846","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

来自可再生碳原料的材料可以限制我们对化石碳的依赖,促进从线性碳密集型经济向可持续的循环经济过渡。与传统的甲壳类纳米甲壳素相比,从白蘑菇中分离出来的甲壳素纳米纤维(ChNFs)具有显著的环境效益。在这里,甲壳素纳米纤维被用来增强天然和化石来源的聚合物,即羧甲基纤维素(CMC)和聚乙烯吡咯烷酮(PVP)。加入 5 wt % ChNFs 后,PVP 的杨氏模量从 1217 ± 11 兆帕增加到 1509 ± 22 兆帕,CMC 的杨氏模量从 1979 ± 48 兆帕增加到 2216 ± 102 兆帕。ChNFs 增加了表面疏水性,并延缓了紫外线照射下两种聚合物中 C-H 键的断裂。链裂解引起的黄变减少了,同时确保了延展性的持久保持。鉴于这些结果,我们建议在可再生碳聚合物材料中使用 ChNFs,其性能可与化石基基准塑料相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fungal Chitin Nanofibrils Improve Mechanical Performance and UV-Light Resistance in Carboxymethylcellulose and Polyvinylpyrrolidone Films.

Materials from renewable carbon feedstock can limit our dependence on fossil carbon and facilitate the transition from linear carbon-intensive economies to sustainable, circular economies. Chitin nanofibrils (ChNFs) isolated from white mushrooms offer remarkable environmental benefits over conventional crustacean-derived nanochitin. Herein, ChNFs are utilized to reinforce polymers of natural and fossil origin, carboxymethyl cellulose (CMC) and polyvinylpyrrolidone (PVP), respectively. Incorporation of 5 wt % ChNFs increases the Young's modulus from 1217 ± 11 to 1509 ± 22 MPa for PVP and from 1979 ± 48 to 2216 ± 102 MPa for CMC. ChNFs increase surface hydrophobicity and retard the scission of the C-H bond as a result of UV-light irradiation in both polymers under investigation. The yellowing from chain scission is reduced, while long-lasting retention of ductility is ensured. Given these results, we propose the utilization of ChNFs in sustainable polymeric materials from renewable carbon with competitive performance against fossil-based benchmark plastics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信