D H Bowskill, B I Tan, A Keates, I J Sugden, C S Adjiman, C C Pantelides
{"title":"晶体结构预测的大规模参数估计。第 1 部分:数据集、方法和实施。","authors":"D H Bowskill, B I Tan, A Keates, I J Sugden, C S Adjiman, C C Pantelides","doi":"10.1021/acs.jctc.4c01091","DOIUrl":null,"url":null,"abstract":"<p><p>Crystal structure prediction (CSP) seeks to identify all thermodynamically accessible solid forms of a given compound and, crucially, to establish the relative thermodynamic stability between different polymorphs. The conventional hierarchical CSP workflow suggests that no single energy model can fulfill the needs of all stages in the workflow, and energy models across a spectrum of fidelities and computational costs are required. Hybrid <i>ab initio</i>/empirical force-field (HAIEFF) models have demonstrated a good balance of these two factors, but the force-field component presents a major bottleneck for model accuracy. Existing parameter estimation tools for fitting this empirical component are inefficient and have severe limitations on the manageable problem size. This, combined with a lack of reliable reference data for parameter fitting, has resulted in development in the force-field component of HAIEFF models having mostly stagnated. In this work, we address these barriers to progress. First, we introduce a curated database of 755 organic crystal structures, obtained using high quality, solid-state DFT-D calculations, which provide a complete set of geometry and energy data. Comparisons to various theoretical and experimental data sources indicate that this database provides suitable diversity for parameter fitting. In tandem, we also put forward a new parameter estimation algorithm implemented as the CrystalEstimator program. Our tests demonstrate that CrystalEstimator is capable of efficiently handling large-scale parameter estimation problems, simultaneously fitting as many as 62 model parameters based on data from 445 structures. This problem size far exceeds any previously reported works related to CSP force-field parametrization. These developments form a strong foundation for all future work involving parameter estimation of transferable or tailor-made force-fields for HAIEFF models. This ultimately opens the way for significant improvements in the accuracy achieved by the HAIEFF models.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10288-10315"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603618/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Parameter Estimation for Crystal Structure Prediction. Part 1: Dataset, Methodology, and Implementation.\",\"authors\":\"D H Bowskill, B I Tan, A Keates, I J Sugden, C S Adjiman, C C Pantelides\",\"doi\":\"10.1021/acs.jctc.4c01091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crystal structure prediction (CSP) seeks to identify all thermodynamically accessible solid forms of a given compound and, crucially, to establish the relative thermodynamic stability between different polymorphs. The conventional hierarchical CSP workflow suggests that no single energy model can fulfill the needs of all stages in the workflow, and energy models across a spectrum of fidelities and computational costs are required. Hybrid <i>ab initio</i>/empirical force-field (HAIEFF) models have demonstrated a good balance of these two factors, but the force-field component presents a major bottleneck for model accuracy. Existing parameter estimation tools for fitting this empirical component are inefficient and have severe limitations on the manageable problem size. This, combined with a lack of reliable reference data for parameter fitting, has resulted in development in the force-field component of HAIEFF models having mostly stagnated. In this work, we address these barriers to progress. First, we introduce a curated database of 755 organic crystal structures, obtained using high quality, solid-state DFT-D calculations, which provide a complete set of geometry and energy data. Comparisons to various theoretical and experimental data sources indicate that this database provides suitable diversity for parameter fitting. In tandem, we also put forward a new parameter estimation algorithm implemented as the CrystalEstimator program. Our tests demonstrate that CrystalEstimator is capable of efficiently handling large-scale parameter estimation problems, simultaneously fitting as many as 62 model parameters based on data from 445 structures. This problem size far exceeds any previously reported works related to CSP force-field parametrization. These developments form a strong foundation for all future work involving parameter estimation of transferable or tailor-made force-fields for HAIEFF models. This ultimately opens the way for significant improvements in the accuracy achieved by the HAIEFF models.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"10288-10315\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603618/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c01091\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01091","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Large-Scale Parameter Estimation for Crystal Structure Prediction. Part 1: Dataset, Methodology, and Implementation.
Crystal structure prediction (CSP) seeks to identify all thermodynamically accessible solid forms of a given compound and, crucially, to establish the relative thermodynamic stability between different polymorphs. The conventional hierarchical CSP workflow suggests that no single energy model can fulfill the needs of all stages in the workflow, and energy models across a spectrum of fidelities and computational costs are required. Hybrid ab initio/empirical force-field (HAIEFF) models have demonstrated a good balance of these two factors, but the force-field component presents a major bottleneck for model accuracy. Existing parameter estimation tools for fitting this empirical component are inefficient and have severe limitations on the manageable problem size. This, combined with a lack of reliable reference data for parameter fitting, has resulted in development in the force-field component of HAIEFF models having mostly stagnated. In this work, we address these barriers to progress. First, we introduce a curated database of 755 organic crystal structures, obtained using high quality, solid-state DFT-D calculations, which provide a complete set of geometry and energy data. Comparisons to various theoretical and experimental data sources indicate that this database provides suitable diversity for parameter fitting. In tandem, we also put forward a new parameter estimation algorithm implemented as the CrystalEstimator program. Our tests demonstrate that CrystalEstimator is capable of efficiently handling large-scale parameter estimation problems, simultaneously fitting as many as 62 model parameters based on data from 445 structures. This problem size far exceeds any previously reported works related to CSP force-field parametrization. These developments form a strong foundation for all future work involving parameter estimation of transferable or tailor-made force-fields for HAIEFF models. This ultimately opens the way for significant improvements in the accuracy achieved by the HAIEFF models.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.