{"title":"不同金属掺杂的氧化镍纳米粒子在阳光介导下降解低密度聚乙烯微塑料薄膜。","authors":"Jameel Mohammed Musthafa, Badal Kumar Mandal","doi":"10.1007/s43630-024-00653-z","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the widespread use and incorrect handling of plastics, we need to find a practical and effective way to eliminate plastic waste from the environment. Different metal-doped nickel oxide (DMD-NiO) nanoparticles (NPs) were synthesized using a sol-gel technique and were used to degrade low-density polyethylene (LDPE) microplastic (MP) films when exposed to sunlight. The optical and structural properties of sol-gel method synthesized materials were investigated using a variety of characterization methods (Fourier transform infrared (FT-IR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray diffractometer (XRD) analysis, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, and thermogravimetric analysis (TGA). Degradation study results suggest that the photocatalytic activity of DMD-NiO-LDPE nanocomposites (NCs) films was greater than that of pure LDPE and undoped NiO-LDPE films. Because of their increased optical absorption and efficient suppression of photo-produced charge carriers' recombination, the DMD-NiO NPs showed higher photocatalytic degradation of LDPE films. Thus, LDPE films with 2% wt Fe-NiO (iron-doped nickel oxide) nanomaterials showed a degradation of around 38.16% among DMD-NiO-LDPE NCs films under visible light over a short period of 30 days (240 h). The formation of carbonyl groups in the degradation product of LDPE was confirmed by Fourier transform infrared (FT-IR) analysis. When compared to the original LDPE film, the Fe-NiO-LDPE NCs films showed a significant decrease in crystallinity and carbonyl indexes, as much as 8.4% lower. The current project proposes the development of eco-friendly photocatalysts using a sol-gel technique for combating MP pollution in the environment.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"2091-2105"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different metal-doped NiO nanoparticles for sunlight-mediated degradation of low-density polyethylene microplastic films.\",\"authors\":\"Jameel Mohammed Musthafa, Badal Kumar Mandal\",\"doi\":\"10.1007/s43630-024-00653-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the widespread use and incorrect handling of plastics, we need to find a practical and effective way to eliminate plastic waste from the environment. Different metal-doped nickel oxide (DMD-NiO) nanoparticles (NPs) were synthesized using a sol-gel technique and were used to degrade low-density polyethylene (LDPE) microplastic (MP) films when exposed to sunlight. The optical and structural properties of sol-gel method synthesized materials were investigated using a variety of characterization methods (Fourier transform infrared (FT-IR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray diffractometer (XRD) analysis, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, and thermogravimetric analysis (TGA). Degradation study results suggest that the photocatalytic activity of DMD-NiO-LDPE nanocomposites (NCs) films was greater than that of pure LDPE and undoped NiO-LDPE films. Because of their increased optical absorption and efficient suppression of photo-produced charge carriers' recombination, the DMD-NiO NPs showed higher photocatalytic degradation of LDPE films. Thus, LDPE films with 2% wt Fe-NiO (iron-doped nickel oxide) nanomaterials showed a degradation of around 38.16% among DMD-NiO-LDPE NCs films under visible light over a short period of 30 days (240 h). The formation of carbonyl groups in the degradation product of LDPE was confirmed by Fourier transform infrared (FT-IR) analysis. When compared to the original LDPE film, the Fe-NiO-LDPE NCs films showed a significant decrease in crystallinity and carbonyl indexes, as much as 8.4% lower. The current project proposes the development of eco-friendly photocatalysts using a sol-gel technique for combating MP pollution in the environment.</p>\",\"PeriodicalId\":98,\"journal\":{\"name\":\"Photochemical & Photobiological Sciences\",\"volume\":\" \",\"pages\":\"2091-2105\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemical & Photobiological Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s43630-024-00653-z\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00653-z","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Different metal-doped NiO nanoparticles for sunlight-mediated degradation of low-density polyethylene microplastic films.
Due to the widespread use and incorrect handling of plastics, we need to find a practical and effective way to eliminate plastic waste from the environment. Different metal-doped nickel oxide (DMD-NiO) nanoparticles (NPs) were synthesized using a sol-gel technique and were used to degrade low-density polyethylene (LDPE) microplastic (MP) films when exposed to sunlight. The optical and structural properties of sol-gel method synthesized materials were investigated using a variety of characterization methods (Fourier transform infrared (FT-IR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray diffractometer (XRD) analysis, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, and thermogravimetric analysis (TGA). Degradation study results suggest that the photocatalytic activity of DMD-NiO-LDPE nanocomposites (NCs) films was greater than that of pure LDPE and undoped NiO-LDPE films. Because of their increased optical absorption and efficient suppression of photo-produced charge carriers' recombination, the DMD-NiO NPs showed higher photocatalytic degradation of LDPE films. Thus, LDPE films with 2% wt Fe-NiO (iron-doped nickel oxide) nanomaterials showed a degradation of around 38.16% among DMD-NiO-LDPE NCs films under visible light over a short period of 30 days (240 h). The formation of carbonyl groups in the degradation product of LDPE was confirmed by Fourier transform infrared (FT-IR) analysis. When compared to the original LDPE film, the Fe-NiO-LDPE NCs films showed a significant decrease in crystallinity and carbonyl indexes, as much as 8.4% lower. The current project proposes the development of eco-friendly photocatalysts using a sol-gel technique for combating MP pollution in the environment.