{"title":"甲壳动物 Acanthochiton rubrolineatus(甲壳纲,多孔目,软体动物)染色体级基因组组装。","authors":"Jiangyong Qu, Xiaofei Lu, Chenen Tu, Fuyang He, Sutao Li, Dongyue Gu, Shuang Wang, Zhikai Xing, Li Zheng, Xumin Wang, Lijun Wang","doi":"10.3390/ani14213161","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: Chitons (Mollusca, Polyplacophora) are relatively primitive species in Mollusca that allow the study of biomineralization. Although mitochondrial genomes have been isolated from Polyplacophora, there is no genomic information at the chromosomal level; (2) Methods: Here we report a chromosome-level genome assembly for <i>Acanthochiton rubrolineatus</i> using PacBio (Pacific Biosciences, United States) reads and high-throughput chromosome conformation capture (Hi-C) data; (3) Results: The assembly spans 1.08 Gb with a contig N50 of 3.63 Mb and 99.97% of the genome assigned to eight chromosomes. Among the 32,291 predicted genes, 76.32% had functional predictions. The divergence time of Brachiopoda and Mollusca was ~550.8 Mya (million years ago), and that of <i>A. rubrolineatus</i> and other mollusks was ~548.5 Mya; (4) Conclusions: This study not only offers high-quality reference sequences for the Acanthochiton rubrolineatus genome, but also establishes groundwork for investigating the mechanisms of Polyplacophora biomineralization and its evolutionary history. This research will aid in uncovering the genetic foundations of molluscan adaptations across diverse environments.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"14 21","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545220/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Chromosome-Level Genome Assembly of Chiton <i>Acanthochiton rubrolineatus</i> (Chitonida, Polyplacophora, Mollusca).\",\"authors\":\"Jiangyong Qu, Xiaofei Lu, Chenen Tu, Fuyang He, Sutao Li, Dongyue Gu, Shuang Wang, Zhikai Xing, Li Zheng, Xumin Wang, Lijun Wang\",\"doi\":\"10.3390/ani14213161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>(1) Background: Chitons (Mollusca, Polyplacophora) are relatively primitive species in Mollusca that allow the study of biomineralization. Although mitochondrial genomes have been isolated from Polyplacophora, there is no genomic information at the chromosomal level; (2) Methods: Here we report a chromosome-level genome assembly for <i>Acanthochiton rubrolineatus</i> using PacBio (Pacific Biosciences, United States) reads and high-throughput chromosome conformation capture (Hi-C) data; (3) Results: The assembly spans 1.08 Gb with a contig N50 of 3.63 Mb and 99.97% of the genome assigned to eight chromosomes. Among the 32,291 predicted genes, 76.32% had functional predictions. The divergence time of Brachiopoda and Mollusca was ~550.8 Mya (million years ago), and that of <i>A. rubrolineatus</i> and other mollusks was ~548.5 Mya; (4) Conclusions: This study not only offers high-quality reference sequences for the Acanthochiton rubrolineatus genome, but also establishes groundwork for investigating the mechanisms of Polyplacophora biomineralization and its evolutionary history. This research will aid in uncovering the genetic foundations of molluscan adaptations across diverse environments.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545220/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani14213161\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani14213161","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
A Chromosome-Level Genome Assembly of Chiton Acanthochiton rubrolineatus (Chitonida, Polyplacophora, Mollusca).
(1) Background: Chitons (Mollusca, Polyplacophora) are relatively primitive species in Mollusca that allow the study of biomineralization. Although mitochondrial genomes have been isolated from Polyplacophora, there is no genomic information at the chromosomal level; (2) Methods: Here we report a chromosome-level genome assembly for Acanthochiton rubrolineatus using PacBio (Pacific Biosciences, United States) reads and high-throughput chromosome conformation capture (Hi-C) data; (3) Results: The assembly spans 1.08 Gb with a contig N50 of 3.63 Mb and 99.97% of the genome assigned to eight chromosomes. Among the 32,291 predicted genes, 76.32% had functional predictions. The divergence time of Brachiopoda and Mollusca was ~550.8 Mya (million years ago), and that of A. rubrolineatus and other mollusks was ~548.5 Mya; (4) Conclusions: This study not only offers high-quality reference sequences for the Acanthochiton rubrolineatus genome, but also establishes groundwork for investigating the mechanisms of Polyplacophora biomineralization and its evolutionary history. This research will aid in uncovering the genetic foundations of molluscan adaptations across diverse environments.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).