Christina Sul, Caitlin V Lewis, Janelle Posey, Mariah Jordan, Daniel Colon Hidalgo, Timothy Porfilio, Hanan Elajaili, Genevieve McCormack, Samuel Burciaga, Cassidy Delaney, Eva S Nozik
{"title":"增加循环中的细胞外超氧化物歧化酶可减轻血小板与中性粒细胞的相互作用","authors":"Christina Sul, Caitlin V Lewis, Janelle Posey, Mariah Jordan, Daniel Colon Hidalgo, Timothy Porfilio, Hanan Elajaili, Genevieve McCormack, Samuel Burciaga, Cassidy Delaney, Eva S Nozik","doi":"10.1165/rcmb.2024-0292OC","DOIUrl":null,"url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) is a serious illness accounting for 10% of ICU admissions and high mortality of 31-45% with a paucity of pharmacologic treatment options. Dysregulated inflammation and oxidative stress are hallmark features of ARDS. We previously showed that transgenic mice expressing a naturally occurring polymorphism of the antioxidant enzyme extracellular superoxide dismutase (EC-SOD), are protected against <i>Staphylococcus aureus (S. aureus)</i> pneumonia, acute lung injury, and pulmonary neutrophilia. In this mouse strain, an R213G amino acid substitution leads to lower tissue binding affinity and elevated alveolar and plasma EC-SOD levels, though the redox-regulated mechanisms responsible for protection against S. aureus are not yet elucidated. Neutrophils are recruited to the areas of injury and inflammation, in part by activated platelets, which contain multiple redox-sensitive targets. Thus, we hypothesize that increased circulating EC-SOD due to the EC-SOD R213G variant protects against <i>S. aureus</i> pneumonia by reducing platelet activation and subsequent neutrophil recruitment to the lung. We demonstrate that, compared to WT mice with <i>S. aureus</i> pneumonia, platelet activation, formation of platelet-neutrophil aggregates (PNAs), and influx of neutrophils and PNAs into the lung are decreased in the infected R213G mice. Furthermore, pre-treatment with a MnTE-2-PyP SOD mimetic protects against S. aureus-induced platelet activation, pulmonary neutrophilia, and acute lung injury. Our data highlight the redox regulation of platelet activation as a driver of <i>S. aureus</i>-induced acute lung injury.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased Circulating Extracellular Superoxide Dismutase Attenuates Platelet-Neutrophil Interactions.\",\"authors\":\"Christina Sul, Caitlin V Lewis, Janelle Posey, Mariah Jordan, Daniel Colon Hidalgo, Timothy Porfilio, Hanan Elajaili, Genevieve McCormack, Samuel Burciaga, Cassidy Delaney, Eva S Nozik\",\"doi\":\"10.1165/rcmb.2024-0292OC\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute respiratory distress syndrome (ARDS) is a serious illness accounting for 10% of ICU admissions and high mortality of 31-45% with a paucity of pharmacologic treatment options. Dysregulated inflammation and oxidative stress are hallmark features of ARDS. We previously showed that transgenic mice expressing a naturally occurring polymorphism of the antioxidant enzyme extracellular superoxide dismutase (EC-SOD), are protected against <i>Staphylococcus aureus (S. aureus)</i> pneumonia, acute lung injury, and pulmonary neutrophilia. In this mouse strain, an R213G amino acid substitution leads to lower tissue binding affinity and elevated alveolar and plasma EC-SOD levels, though the redox-regulated mechanisms responsible for protection against S. aureus are not yet elucidated. Neutrophils are recruited to the areas of injury and inflammation, in part by activated platelets, which contain multiple redox-sensitive targets. Thus, we hypothesize that increased circulating EC-SOD due to the EC-SOD R213G variant protects against <i>S. aureus</i> pneumonia by reducing platelet activation and subsequent neutrophil recruitment to the lung. We demonstrate that, compared to WT mice with <i>S. aureus</i> pneumonia, platelet activation, formation of platelet-neutrophil aggregates (PNAs), and influx of neutrophils and PNAs into the lung are decreased in the infected R213G mice. Furthermore, pre-treatment with a MnTE-2-PyP SOD mimetic protects against S. aureus-induced platelet activation, pulmonary neutrophilia, and acute lung injury. Our data highlight the redox regulation of platelet activation as a driver of <i>S. aureus</i>-induced acute lung injury.</p>\",\"PeriodicalId\":7655,\"journal\":{\"name\":\"American Journal of Respiratory Cell and Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Respiratory Cell and Molecular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1165/rcmb.2024-0292OC\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0292OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Acute respiratory distress syndrome (ARDS) is a serious illness accounting for 10% of ICU admissions and high mortality of 31-45% with a paucity of pharmacologic treatment options. Dysregulated inflammation and oxidative stress are hallmark features of ARDS. We previously showed that transgenic mice expressing a naturally occurring polymorphism of the antioxidant enzyme extracellular superoxide dismutase (EC-SOD), are protected against Staphylococcus aureus (S. aureus) pneumonia, acute lung injury, and pulmonary neutrophilia. In this mouse strain, an R213G amino acid substitution leads to lower tissue binding affinity and elevated alveolar and plasma EC-SOD levels, though the redox-regulated mechanisms responsible for protection against S. aureus are not yet elucidated. Neutrophils are recruited to the areas of injury and inflammation, in part by activated platelets, which contain multiple redox-sensitive targets. Thus, we hypothesize that increased circulating EC-SOD due to the EC-SOD R213G variant protects against S. aureus pneumonia by reducing platelet activation and subsequent neutrophil recruitment to the lung. We demonstrate that, compared to WT mice with S. aureus pneumonia, platelet activation, formation of platelet-neutrophil aggregates (PNAs), and influx of neutrophils and PNAs into the lung are decreased in the infected R213G mice. Furthermore, pre-treatment with a MnTE-2-PyP SOD mimetic protects against S. aureus-induced platelet activation, pulmonary neutrophilia, and acute lung injury. Our data highlight the redox regulation of platelet activation as a driver of S. aureus-induced acute lung injury.
期刊介绍:
The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.