探索铁蛋白沉积在肝脏疾病中的最新作用:机制、调节器和治疗意义》。

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ting Ge, Yang Wang, Yiwen Han, Xiaofeng Bao, Chunfeng Lu
{"title":"探索铁蛋白沉积在肝脏疾病中的最新作用:机制、调节器和治疗意义》。","authors":"Ting Ge, Yang Wang, Yiwen Han, Xiaofeng Bao, Chunfeng Lu","doi":"10.1007/s12013-024-01611-3","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis, a newly discovered mode of cell death, is a type of iron-dependent regulated cell death characterized by intracellular excessive lipid peroxidation and imbalanced redox. As the liver is susceptible to oxidative damage and the abnormal iron accumulation is a major feature of most liver diseases, studies on ferroptosis in the field of liver diseases are of great interest. Studies show that targeting the key regulators of ferroptosis can effectively alleviate or even reverse the deterioration process of liver diseases. System Xc<sup>-</sup> and glutathione peroxidase 4 are the main defense regulators of ferroptosis, while acyl-CoA synthetase long chain family member 4 is a key enzyme causing peroxidation in ferroptosis. Generally speaking, ferroptosis should be suppressed in alcoholic liver disease, non-alcoholic fatty liver disease, and drug-induced liver injury, while it should be induced in liver fibrosis and hepatocellular carcinoma. In this review, we summarize the main regulators involved in ferroptosis and then the mechanisms of ferroptosis in different liver diseases. Treatment options of drugs targeting ferroptosis are further concluded. Determining different triggers of ferroptosis can clarify the mechanism of ferroptosis occurs at both physiological and pathological levels.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Updated Roles of Ferroptosis in Liver Diseases: Mechanisms, Regulators, and Therapeutic Implications.\",\"authors\":\"Ting Ge, Yang Wang, Yiwen Han, Xiaofeng Bao, Chunfeng Lu\",\"doi\":\"10.1007/s12013-024-01611-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis, a newly discovered mode of cell death, is a type of iron-dependent regulated cell death characterized by intracellular excessive lipid peroxidation and imbalanced redox. As the liver is susceptible to oxidative damage and the abnormal iron accumulation is a major feature of most liver diseases, studies on ferroptosis in the field of liver diseases are of great interest. Studies show that targeting the key regulators of ferroptosis can effectively alleviate or even reverse the deterioration process of liver diseases. System Xc<sup>-</sup> and glutathione peroxidase 4 are the main defense regulators of ferroptosis, while acyl-CoA synthetase long chain family member 4 is a key enzyme causing peroxidation in ferroptosis. Generally speaking, ferroptosis should be suppressed in alcoholic liver disease, non-alcoholic fatty liver disease, and drug-induced liver injury, while it should be induced in liver fibrosis and hepatocellular carcinoma. In this review, we summarize the main regulators involved in ferroptosis and then the mechanisms of ferroptosis in different liver diseases. Treatment options of drugs targeting ferroptosis are further concluded. Determining different triggers of ferroptosis can clarify the mechanism of ferroptosis occurs at both physiological and pathological levels.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01611-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01611-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铁中毒是一种新发现的细胞死亡模式,是一种以细胞内过度脂质过氧化和氧化还原失衡为特征的铁依赖性调控细胞死亡。由于肝脏易受氧化损伤,而铁的异常积累是大多数肝病的主要特征,因此肝病领域的铁凋亡研究备受关注。研究表明,针对铁氧化的关键调控因子可以有效缓解甚至逆转肝病的恶化过程。Xc系统和谷胱甘肽过氧化物酶4是铁氧化的主要防御调节因子,而酰基-CoA合成酶长链家族成员4则是铁氧化过程中导致过氧化的关键酶。一般来说,酒精性肝病、非酒精性脂肪肝和药物性肝损伤应抑制铁变态反应,而肝纤维化和肝细胞癌则应诱导铁变态反应。在这篇综述中,我们总结了参与铁蛋白沉积的主要调节因子,然后介绍了不同肝病中铁蛋白沉积的机制。并进一步总结了针对铁蛋白沉积的药物治疗方案。确定铁蛋白沉积的不同诱因可以阐明铁蛋白沉积在生理和病理层面的发生机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Updated Roles of Ferroptosis in Liver Diseases: Mechanisms, Regulators, and Therapeutic Implications.

Ferroptosis, a newly discovered mode of cell death, is a type of iron-dependent regulated cell death characterized by intracellular excessive lipid peroxidation and imbalanced redox. As the liver is susceptible to oxidative damage and the abnormal iron accumulation is a major feature of most liver diseases, studies on ferroptosis in the field of liver diseases are of great interest. Studies show that targeting the key regulators of ferroptosis can effectively alleviate or even reverse the deterioration process of liver diseases. System Xc- and glutathione peroxidase 4 are the main defense regulators of ferroptosis, while acyl-CoA synthetase long chain family member 4 is a key enzyme causing peroxidation in ferroptosis. Generally speaking, ferroptosis should be suppressed in alcoholic liver disease, non-alcoholic fatty liver disease, and drug-induced liver injury, while it should be induced in liver fibrosis and hepatocellular carcinoma. In this review, we summarize the main regulators involved in ferroptosis and then the mechanisms of ferroptosis in different liver diseases. Treatment options of drugs targeting ferroptosis are further concluded. Determining different triggers of ferroptosis can clarify the mechanism of ferroptosis occurs at both physiological and pathological levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信