{"title":"脱羧点击环化反应:实现取代的 1,2,3-三唑衍生物的新兴战略。","authors":"Manpreet Kaur, Divya Bharti, Vinod Kumar, Praveen Kumar Verma, Rakesh Kumar","doi":"10.1007/s11030-024-11014-4","DOIUrl":null,"url":null,"abstract":"<p><p>1,2,3-triazole is a vital structural motif of various drugs and therapeutic leads, as well as a linker for bioconjugation and molecular recognition. Cu-catalysed click cycloaddition of azides with terminal alkynes (CuAAc) is an important reaction to construct the triazole core. In recent years, various decarboxylative click strategies utilizing alkynoic acids as stable surrogates for low boiling or gaseous alkynes have been developed. For instance, propiolic acid, which is easy to transport, is a safe alternative for flammable gaseous acetylene. In this review article, we have covered the recent development in the decarboxylative click cycloaddition of alkynoic acids with azides leading to the synthesis of diversely substituted triazoles, including monosubstituted, 1,4-disubstituted and fully substituted 1,2,3-triazoles. Various aspects such as mechanistic insights and optimization conditions/role of catalyst are highlighted.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decarboxylative click cycloaddition: an emerging strategy towards substituted 1,2,3-triazole derivatives.\",\"authors\":\"Manpreet Kaur, Divya Bharti, Vinod Kumar, Praveen Kumar Verma, Rakesh Kumar\",\"doi\":\"10.1007/s11030-024-11014-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1,2,3-triazole is a vital structural motif of various drugs and therapeutic leads, as well as a linker for bioconjugation and molecular recognition. Cu-catalysed click cycloaddition of azides with terminal alkynes (CuAAc) is an important reaction to construct the triazole core. In recent years, various decarboxylative click strategies utilizing alkynoic acids as stable surrogates for low boiling or gaseous alkynes have been developed. For instance, propiolic acid, which is easy to transport, is a safe alternative for flammable gaseous acetylene. In this review article, we have covered the recent development in the decarboxylative click cycloaddition of alkynoic acids with azides leading to the synthesis of diversely substituted triazoles, including monosubstituted, 1,4-disubstituted and fully substituted 1,2,3-triazoles. Various aspects such as mechanistic insights and optimization conditions/role of catalyst are highlighted.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11014-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11014-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Decarboxylative click cycloaddition: an emerging strategy towards substituted 1,2,3-triazole derivatives.
1,2,3-triazole is a vital structural motif of various drugs and therapeutic leads, as well as a linker for bioconjugation and molecular recognition. Cu-catalysed click cycloaddition of azides with terminal alkynes (CuAAc) is an important reaction to construct the triazole core. In recent years, various decarboxylative click strategies utilizing alkynoic acids as stable surrogates for low boiling or gaseous alkynes have been developed. For instance, propiolic acid, which is easy to transport, is a safe alternative for flammable gaseous acetylene. In this review article, we have covered the recent development in the decarboxylative click cycloaddition of alkynoic acids with azides leading to the synthesis of diversely substituted triazoles, including monosubstituted, 1,4-disubstituted and fully substituted 1,2,3-triazoles. Various aspects such as mechanistic insights and optimization conditions/role of catalyst are highlighted.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;