揭示铁蛋白沉积调节引发的线粒体微环境变化

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Lili Cong, Yanting Shen, Jiaqi Wang, Fanxiang Meng, Weiqing Xu, Weixia Sun, Shuping Xu
{"title":"揭示铁蛋白沉积调节引发的线粒体微环境变化","authors":"Lili Cong,&nbsp;Yanting Shen,&nbsp;Jiaqi Wang,&nbsp;Fanxiang Meng,&nbsp;Weiqing Xu,&nbsp;Weixia Sun,&nbsp;Shuping Xu","doi":"10.1007/s00216-024-05638-6","DOIUrl":null,"url":null,"abstract":"<div><p>Ferroptosis is a unique form of iron-dependent cell death characterized by dramatic ultrastructural changes in mitochondria. Since mitochondria are intracellular energy factories and binding sites for producing reactive oxygen species, there is increasing evidence that mitochondria are closely related to ferroptosis and play a crucial role in the regulation and execution of ferroptosis. The pH of the mitochondrial microenvironment is an important parameter for cellular physiological activities. Its abnormal fluctuations are commonly thought to be associated with cancers and other diseases. Herein, a surface-enhanced Raman scattering (SERS)–based pH nanosensor with high sensitivity and targeting function was utilized to quantify and monitor mitochondrial pH value. This nanosensor was constructed by gold nanorods (AuNRs) functionalized with pH-responsive molecules (4-mercaptopyridine, MPy) and mitochondrion-targeting peptides (AMMT) that can precisely deliver AuNRs to mitochondria. Super-resolution fluorescence imaging was employed to evidence the mitochondrial targeting feature of this nanosensor. Ferroptosis regulation induces intracellular accumulation of lipid peroxide (LPO) and reactive oxygen species (ROS), which cause changes in the mitochondrial pH. This method reveals that ferroptosis leads to the gradual acidification of the mitochondrial internal environment. The conclusion deduced by this study will be helpful for the evaluation and diagnosis of diseases according to intracellular abnormal microenvironments.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":"417 1","pages":"219 - 228"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing mitochondrial microenvironmental changes triggered by ferroptosis regulation\",\"authors\":\"Lili Cong,&nbsp;Yanting Shen,&nbsp;Jiaqi Wang,&nbsp;Fanxiang Meng,&nbsp;Weiqing Xu,&nbsp;Weixia Sun,&nbsp;Shuping Xu\",\"doi\":\"10.1007/s00216-024-05638-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ferroptosis is a unique form of iron-dependent cell death characterized by dramatic ultrastructural changes in mitochondria. Since mitochondria are intracellular energy factories and binding sites for producing reactive oxygen species, there is increasing evidence that mitochondria are closely related to ferroptosis and play a crucial role in the regulation and execution of ferroptosis. The pH of the mitochondrial microenvironment is an important parameter for cellular physiological activities. Its abnormal fluctuations are commonly thought to be associated with cancers and other diseases. Herein, a surface-enhanced Raman scattering (SERS)–based pH nanosensor with high sensitivity and targeting function was utilized to quantify and monitor mitochondrial pH value. This nanosensor was constructed by gold nanorods (AuNRs) functionalized with pH-responsive molecules (4-mercaptopyridine, MPy) and mitochondrion-targeting peptides (AMMT) that can precisely deliver AuNRs to mitochondria. Super-resolution fluorescence imaging was employed to evidence the mitochondrial targeting feature of this nanosensor. Ferroptosis regulation induces intracellular accumulation of lipid peroxide (LPO) and reactive oxygen species (ROS), which cause changes in the mitochondrial pH. This method reveals that ferroptosis leads to the gradual acidification of the mitochondrial internal environment. The conclusion deduced by this study will be helpful for the evaluation and diagnosis of diseases according to intracellular abnormal microenvironments.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\"417 1\",\"pages\":\"219 - 228\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00216-024-05638-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00216-024-05638-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

铁中毒是一种独特的铁依赖性细胞死亡形式,其特点是线粒体的超微结构发生剧烈变化。由于线粒体是细胞内的能量工厂,也是产生活性氧的结合点,越来越多的证据表明线粒体与铁凋亡密切相关,并在铁凋亡的调控和执行过程中发挥着至关重要的作用。线粒体微环境的 pH 值是细胞生理活动的一个重要参数。它的异常波动通常被认为与癌症和其他疾病有关。本文利用一种基于表面增强拉曼散射(SERS)的具有高灵敏度和靶向功能的pH纳米传感器来量化和监测线粒体的pH值。这种纳米传感器是由pH响应分子(4-巯基吡啶,MPy)和线粒体靶向肽(AMMT)功能化的金纳米棒(AuNRs)构建而成。超分辨率荧光成像技术证明了这种纳米传感器的线粒体靶向特性。铁突变调节会诱导细胞内过氧化脂质(LPO)和活性氧(ROS)的积累,从而引起线粒体 pH 值的变化。这种方法揭示了铁突变导致线粒体内部环境逐渐酸化。这项研究得出的结论将有助于根据细胞内异常微环境对疾病进行评估和诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revealing mitochondrial microenvironmental changes triggered by ferroptosis regulation

Ferroptosis is a unique form of iron-dependent cell death characterized by dramatic ultrastructural changes in mitochondria. Since mitochondria are intracellular energy factories and binding sites for producing reactive oxygen species, there is increasing evidence that mitochondria are closely related to ferroptosis and play a crucial role in the regulation and execution of ferroptosis. The pH of the mitochondrial microenvironment is an important parameter for cellular physiological activities. Its abnormal fluctuations are commonly thought to be associated with cancers and other diseases. Herein, a surface-enhanced Raman scattering (SERS)–based pH nanosensor with high sensitivity and targeting function was utilized to quantify and monitor mitochondrial pH value. This nanosensor was constructed by gold nanorods (AuNRs) functionalized with pH-responsive molecules (4-mercaptopyridine, MPy) and mitochondrion-targeting peptides (AMMT) that can precisely deliver AuNRs to mitochondria. Super-resolution fluorescence imaging was employed to evidence the mitochondrial targeting feature of this nanosensor. Ferroptosis regulation induces intracellular accumulation of lipid peroxide (LPO) and reactive oxygen species (ROS), which cause changes in the mitochondrial pH. This method reveals that ferroptosis leads to the gradual acidification of the mitochondrial internal environment. The conclusion deduced by this study will be helpful for the evaluation and diagnosis of diseases according to intracellular abnormal microenvironments.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信