Alena N Joignant, Emily C Hector, Morgan M Barnes, Seth W Kullman, David C Muddiman
{"title":"在多器官模型中,IR-MALDESI 定量采样不易受组织异质性的影响。","authors":"Alena N Joignant, Emily C Hector, Morgan M Barnes, Seth W Kullman, David C Muddiman","doi":"10.1007/s00216-024-05653-7","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative mass spectrometry imaging (qMSI) provides the relative or absolute analyte quantities in a biological specimen in a spatially resolved manner. However, the chemical complexity and physical structure of biological specimens often require one to precisely account for matrix effects in qMSI platforms. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) completely ablates a volume of cryosectioned tissue. This enables the use of a normalization standard that is sprayed underneath the tissue for qMSI applications. Complete sampling has shown to be a significant advantage for qMSI by IR-MALDESI; however, the impact of high tissue heterogeneity has not been systematically studied or quantified. The bias introduced by tissue heterogeneity was investigated by uniformly spraying standards beneath and on top of a whole-body zebrafish section. The quantitative relationship between the signals of the two standards was investigated across this multi-organ model to serve future qMSI experiments by IR-MALDESI and other laser ablation-based sampling methods. The overall ratio between the standards sprayed on top of and beneath the tissue sections remained constant across the entire whole-body section despite significant tissue heterogeneity (e.g., gills, heart, and liver). Additionally, we noted that thinner and/or sucrose-embedded tissues improved these ratios, which will inform future qMSI investigations.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"83-93"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695138/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative sampling by IR-MALDESI is not susceptible to tissue heterogeneity in a multi-organ model.\",\"authors\":\"Alena N Joignant, Emily C Hector, Morgan M Barnes, Seth W Kullman, David C Muddiman\",\"doi\":\"10.1007/s00216-024-05653-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative mass spectrometry imaging (qMSI) provides the relative or absolute analyte quantities in a biological specimen in a spatially resolved manner. However, the chemical complexity and physical structure of biological specimens often require one to precisely account for matrix effects in qMSI platforms. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) completely ablates a volume of cryosectioned tissue. This enables the use of a normalization standard that is sprayed underneath the tissue for qMSI applications. Complete sampling has shown to be a significant advantage for qMSI by IR-MALDESI; however, the impact of high tissue heterogeneity has not been systematically studied or quantified. The bias introduced by tissue heterogeneity was investigated by uniformly spraying standards beneath and on top of a whole-body zebrafish section. The quantitative relationship between the signals of the two standards was investigated across this multi-organ model to serve future qMSI experiments by IR-MALDESI and other laser ablation-based sampling methods. The overall ratio between the standards sprayed on top of and beneath the tissue sections remained constant across the entire whole-body section despite significant tissue heterogeneity (e.g., gills, heart, and liver). Additionally, we noted that thinner and/or sucrose-embedded tissues improved these ratios, which will inform future qMSI investigations.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\" \",\"pages\":\"83-93\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695138/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-024-05653-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05653-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Quantitative sampling by IR-MALDESI is not susceptible to tissue heterogeneity in a multi-organ model.
Quantitative mass spectrometry imaging (qMSI) provides the relative or absolute analyte quantities in a biological specimen in a spatially resolved manner. However, the chemical complexity and physical structure of biological specimens often require one to precisely account for matrix effects in qMSI platforms. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) completely ablates a volume of cryosectioned tissue. This enables the use of a normalization standard that is sprayed underneath the tissue for qMSI applications. Complete sampling has shown to be a significant advantage for qMSI by IR-MALDESI; however, the impact of high tissue heterogeneity has not been systematically studied or quantified. The bias introduced by tissue heterogeneity was investigated by uniformly spraying standards beneath and on top of a whole-body zebrafish section. The quantitative relationship between the signals of the two standards was investigated across this multi-organ model to serve future qMSI experiments by IR-MALDESI and other laser ablation-based sampling methods. The overall ratio between the standards sprayed on top of and beneath the tissue sections remained constant across the entire whole-body section despite significant tissue heterogeneity (e.g., gills, heart, and liver). Additionally, we noted that thinner and/or sucrose-embedded tissues improved these ratios, which will inform future qMSI investigations.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.