{"title":"用于监测多种肝损伤模型中 ONOO- 的创新型荧光探针。","authors":"Cailing Fan, Kaifu Ma, Weijie Chi, Yongwei LiMeng, Qinxi Dong, Yanan Gao, Chaokun Zeng, Wenshu Meng, Wei Shu, Chaoyuan Zeng","doi":"10.1016/j.talanta.2024.127194","DOIUrl":null,"url":null,"abstract":"<p><p>The liver plays a pivotal role in numerous critical physiological processes, functioning as the body's metabolic and detoxification center. Chronic liver disease can precipitate more severe health complications. The onset and progression of liver disease are often characterized by abnormal concentrations of ONOO<sup>-</sup>, a highly reactive species whose direct capture and detection in physiological environments pose significant challenges. This work presents an innovative fluorescent probe NAP-ONOO derived from 1,8-naphthalimide, specifically engineered to dynamically monitor fluctuations of ONOO<sup>-</sup> levels during liver injury. Due to its high biocompatibility, NAP-ONOO enabled to observe varying degrees of ONOO<sup>-</sup> up-regulation across models of liver inflammatory injury, alcohol-induced damage, and drug-induced hepatotoxicity in cellular systems as well as in zebrafish and mice models. These findings highlight the potential of NAP-ONOO for identifying and detecting the liver injury biomarker ONOO<sup>-</sup>. Furthermore, NAP-ONOO serves as potent tool for the identification of liver injuries, drug screening, and cellular imaging analyses, thereby promising avenues for future research endeavors.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"283 ","pages":"127194"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An innovative fluorescent probe for monitoring of ONOO<sup>-</sup> in multiple liver-injury models.\",\"authors\":\"Cailing Fan, Kaifu Ma, Weijie Chi, Yongwei LiMeng, Qinxi Dong, Yanan Gao, Chaokun Zeng, Wenshu Meng, Wei Shu, Chaoyuan Zeng\",\"doi\":\"10.1016/j.talanta.2024.127194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The liver plays a pivotal role in numerous critical physiological processes, functioning as the body's metabolic and detoxification center. Chronic liver disease can precipitate more severe health complications. The onset and progression of liver disease are often characterized by abnormal concentrations of ONOO<sup>-</sup>, a highly reactive species whose direct capture and detection in physiological environments pose significant challenges. This work presents an innovative fluorescent probe NAP-ONOO derived from 1,8-naphthalimide, specifically engineered to dynamically monitor fluctuations of ONOO<sup>-</sup> levels during liver injury. Due to its high biocompatibility, NAP-ONOO enabled to observe varying degrees of ONOO<sup>-</sup> up-regulation across models of liver inflammatory injury, alcohol-induced damage, and drug-induced hepatotoxicity in cellular systems as well as in zebrafish and mice models. These findings highlight the potential of NAP-ONOO for identifying and detecting the liver injury biomarker ONOO<sup>-</sup>. Furthermore, NAP-ONOO serves as potent tool for the identification of liver injuries, drug screening, and cellular imaging analyses, thereby promising avenues for future research endeavors.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"283 \",\"pages\":\"127194\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.127194\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127194","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
An innovative fluorescent probe for monitoring of ONOO- in multiple liver-injury models.
The liver plays a pivotal role in numerous critical physiological processes, functioning as the body's metabolic and detoxification center. Chronic liver disease can precipitate more severe health complications. The onset and progression of liver disease are often characterized by abnormal concentrations of ONOO-, a highly reactive species whose direct capture and detection in physiological environments pose significant challenges. This work presents an innovative fluorescent probe NAP-ONOO derived from 1,8-naphthalimide, specifically engineered to dynamically monitor fluctuations of ONOO- levels during liver injury. Due to its high biocompatibility, NAP-ONOO enabled to observe varying degrees of ONOO- up-regulation across models of liver inflammatory injury, alcohol-induced damage, and drug-induced hepatotoxicity in cellular systems as well as in zebrafish and mice models. These findings highlight the potential of NAP-ONOO for identifying and detecting the liver injury biomarker ONOO-. Furthermore, NAP-ONOO serves as potent tool for the identification of liver injuries, drug screening, and cellular imaging analyses, thereby promising avenues for future research endeavors.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.