不确定性和定价问题下藻类生物燃料供应链网络设计的拉格朗日松弛法。

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Mahsa Arabi, Saeed Yaghoubi
{"title":"不确定性和定价问题下藻类生物燃料供应链网络设计的拉格朗日松弛法。","authors":"Mahsa Arabi, Saeed Yaghoubi","doi":"10.1007/s11356-024-35428-7","DOIUrl":null,"url":null,"abstract":"<p><p>Biofuel has gained significant attention as a potential source to meet fuel demands instead of fossil fuel. The price of biofuel and alternative fuel have a considerable impact on biofuel demand. Thus, it is important to design a biofuel supply chain network that incorporates the biofuel price into an elastic demand. More precisely, a variable demand, including customer importance level (to the environment), biofuel price, and substituted fuel price, is considered in this research. Furthermore, this research presents a bi-objective mixed-integer quadratic formulation that aims to maximize the total profit of the supply chain and carbon absorption in harvesting areas. The problem is solved by the ε-constraint and lagrangian relaxation methods due to its complexity. Moreover, substituted fuel price uncertainty is addressed by two-stage stochastic programming. Finally, a real case study utilizing the data envelopment analysis approach is applied to assess the efficiency and currency of the addressed model. Several consequences are illustrated in the case study, such as rich areas for exporting algae, suggesting hub locations for biofuel production, etc.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lagrangian relaxation approach for algae-based biofuel supply chain network design under uncertainty and pricing issue.\",\"authors\":\"Mahsa Arabi, Saeed Yaghoubi\",\"doi\":\"10.1007/s11356-024-35428-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofuel has gained significant attention as a potential source to meet fuel demands instead of fossil fuel. The price of biofuel and alternative fuel have a considerable impact on biofuel demand. Thus, it is important to design a biofuel supply chain network that incorporates the biofuel price into an elastic demand. More precisely, a variable demand, including customer importance level (to the environment), biofuel price, and substituted fuel price, is considered in this research. Furthermore, this research presents a bi-objective mixed-integer quadratic formulation that aims to maximize the total profit of the supply chain and carbon absorption in harvesting areas. The problem is solved by the ε-constraint and lagrangian relaxation methods due to its complexity. Moreover, substituted fuel price uncertainty is addressed by two-stage stochastic programming. Finally, a real case study utilizing the data envelopment analysis approach is applied to assess the efficiency and currency of the addressed model. Several consequences are illustrated in the case study, such as rich areas for exporting algae, suggesting hub locations for biofuel production, etc.</p>\",\"PeriodicalId\":545,\"journal\":{\"name\":\"Environmental Science and Pollution Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11356-024-35428-7\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35428-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生物燃料作为替代化石燃料满足燃料需求的一种潜在来源,已受到广泛关注。生物燃料和替代燃料的价格对生物燃料的需求有相当大的影响。因此,设计一个将生物燃料价格纳入弹性需求的生物燃料供应链网络非常重要。更确切地说,本研究考虑了可变需求,包括客户对环境的重视程度、生物燃料价格和替代燃料价格。此外,本研究还提出了一个双目标混合整数二次方程公式,旨在实现供应链总利润最大化和收获区域碳吸收最大化。由于其复杂性,该问题采用ε约束法和拉格朗日松弛法求解。此外,替代燃料价格的不确定性也通过两阶段随机程序设计得到了解决。最后,利用数据包络分析方法进行实际案例研究,以评估所处理模型的效率和通用性。该案例研究说明了若干后果,如出口藻类的富集区,建议生物燃料生产的枢纽地点等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lagrangian relaxation approach for algae-based biofuel supply chain network design under uncertainty and pricing issue.

Biofuel has gained significant attention as a potential source to meet fuel demands instead of fossil fuel. The price of biofuel and alternative fuel have a considerable impact on biofuel demand. Thus, it is important to design a biofuel supply chain network that incorporates the biofuel price into an elastic demand. More precisely, a variable demand, including customer importance level (to the environment), biofuel price, and substituted fuel price, is considered in this research. Furthermore, this research presents a bi-objective mixed-integer quadratic formulation that aims to maximize the total profit of the supply chain and carbon absorption in harvesting areas. The problem is solved by the ε-constraint and lagrangian relaxation methods due to its complexity. Moreover, substituted fuel price uncertainty is addressed by two-stage stochastic programming. Finally, a real case study utilizing the data envelopment analysis approach is applied to assess the efficiency and currency of the addressed model. Several consequences are illustrated in the case study, such as rich areas for exporting algae, suggesting hub locations for biofuel production, etc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信