{"title":"天麻甙能缓解小鼠 HaCaT 角质细胞过度增殖并改善咪喹莫特诱导的银屑病。","authors":"Tao Liu, Yuanmin He, Yongmei Liao","doi":"10.15586/aei.v52i6.1157","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Psoriasis is an autoimmune skin condition characterized by hyperproliferation of keratinocytes and chronic immune responses. Gypenosides (Gyp) exhibits anti-proliferative and anti-inflammatory effects on different diseases. However, its functioning and mechanism of Gyp on psoriasis remains unknown.</p><p><strong>Objective: </strong>To explore the effect and mechanism of Gyp on psoriasis.</p><p><strong>Material and methods: </strong>The impact and mechanism of Gyp on psoriasis <i>in vitro</i> and <i>in vivo</i> were probed through cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, reverse transcription quantitative polymerase chain reaction, hematoxylin and eosin staining, enzyme-linked immunosorbent serologic assay, immunofluorescence, and Western Blotting assays.</p><p><strong>Results: </strong>Gyp inhibited cell proliferation and the release of inflammatory cytokinesin interleukin (IL-22)-induced spontaneously transformed human aneuploid immortal keratinocyte cell line (HaCaT). In addition, Gyp demonstrated enhancement in erythema and scaling as well as reductions in the thickness of epidermal layers, release of inflammatory factors, and Ki-67 (a nuclear protein) level in imiquimod (IMQ)-induced mice. Mechanistically, Gyp upregulated nuclear factor erythroid 2-related factor 2 (Nrf-2) expression and diminished the level of p-p65/p65 and p-STAT3/STAT3 in skin tissues from IMQ-induced mice and IL-22-induced HaCaT cells, which were reversed with the application of ML385, an inhibitor of Nrf2. In addition, the administration of ML385 reversed decrease in cell viability and reduced the expressions of IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in IL-22-induced HaCaT cells caused by Gyp.</p><p><strong>Conclusion: </strong>In summary, Gyp reduced excessive cell growth and inflammation in psoriasis by suppressing nuclear factor <i>kappa B</i> (NF-κB) and signal transducer and activator of transcription 3 (STAT3) through activation of Nrf2.</p>","PeriodicalId":7536,"journal":{"name":"Allergologia et immunopathologia","volume":"52 6","pages":"22-32"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gypenosides alleviates HaCaT keratinocyte hyperproliferation and ameliorates imiquimod-induced psoriasis in mice.\",\"authors\":\"Tao Liu, Yuanmin He, Yongmei Liao\",\"doi\":\"10.15586/aei.v52i6.1157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Psoriasis is an autoimmune skin condition characterized by hyperproliferation of keratinocytes and chronic immune responses. Gypenosides (Gyp) exhibits anti-proliferative and anti-inflammatory effects on different diseases. However, its functioning and mechanism of Gyp on psoriasis remains unknown.</p><p><strong>Objective: </strong>To explore the effect and mechanism of Gyp on psoriasis.</p><p><strong>Material and methods: </strong>The impact and mechanism of Gyp on psoriasis <i>in vitro</i> and <i>in vivo</i> were probed through cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, reverse transcription quantitative polymerase chain reaction, hematoxylin and eosin staining, enzyme-linked immunosorbent serologic assay, immunofluorescence, and Western Blotting assays.</p><p><strong>Results: </strong>Gyp inhibited cell proliferation and the release of inflammatory cytokinesin interleukin (IL-22)-induced spontaneously transformed human aneuploid immortal keratinocyte cell line (HaCaT). In addition, Gyp demonstrated enhancement in erythema and scaling as well as reductions in the thickness of epidermal layers, release of inflammatory factors, and Ki-67 (a nuclear protein) level in imiquimod (IMQ)-induced mice. Mechanistically, Gyp upregulated nuclear factor erythroid 2-related factor 2 (Nrf-2) expression and diminished the level of p-p65/p65 and p-STAT3/STAT3 in skin tissues from IMQ-induced mice and IL-22-induced HaCaT cells, which were reversed with the application of ML385, an inhibitor of Nrf2. In addition, the administration of ML385 reversed decrease in cell viability and reduced the expressions of IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in IL-22-induced HaCaT cells caused by Gyp.</p><p><strong>Conclusion: </strong>In summary, Gyp reduced excessive cell growth and inflammation in psoriasis by suppressing nuclear factor <i>kappa B</i> (NF-κB) and signal transducer and activator of transcription 3 (STAT3) through activation of Nrf2.</p>\",\"PeriodicalId\":7536,\"journal\":{\"name\":\"Allergologia et immunopathologia\",\"volume\":\"52 6\",\"pages\":\"22-32\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Allergologia et immunopathologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.15586/aei.v52i6.1157\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ALLERGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergologia et immunopathologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15586/aei.v52i6.1157","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ALLERGY","Score":null,"Total":0}
Gypenosides alleviates HaCaT keratinocyte hyperproliferation and ameliorates imiquimod-induced psoriasis in mice.
Background: Psoriasis is an autoimmune skin condition characterized by hyperproliferation of keratinocytes and chronic immune responses. Gypenosides (Gyp) exhibits anti-proliferative and anti-inflammatory effects on different diseases. However, its functioning and mechanism of Gyp on psoriasis remains unknown.
Objective: To explore the effect and mechanism of Gyp on psoriasis.
Material and methods: The impact and mechanism of Gyp on psoriasis in vitro and in vivo were probed through cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, reverse transcription quantitative polymerase chain reaction, hematoxylin and eosin staining, enzyme-linked immunosorbent serologic assay, immunofluorescence, and Western Blotting assays.
Results: Gyp inhibited cell proliferation and the release of inflammatory cytokinesin interleukin (IL-22)-induced spontaneously transformed human aneuploid immortal keratinocyte cell line (HaCaT). In addition, Gyp demonstrated enhancement in erythema and scaling as well as reductions in the thickness of epidermal layers, release of inflammatory factors, and Ki-67 (a nuclear protein) level in imiquimod (IMQ)-induced mice. Mechanistically, Gyp upregulated nuclear factor erythroid 2-related factor 2 (Nrf-2) expression and diminished the level of p-p65/p65 and p-STAT3/STAT3 in skin tissues from IMQ-induced mice and IL-22-induced HaCaT cells, which were reversed with the application of ML385, an inhibitor of Nrf2. In addition, the administration of ML385 reversed decrease in cell viability and reduced the expressions of IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in IL-22-induced HaCaT cells caused by Gyp.
Conclusion: In summary, Gyp reduced excessive cell growth and inflammation in psoriasis by suppressing nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) through activation of Nrf2.
期刊介绍:
Founded in 1972 by Professor A. Oehling, Allergologia et Immunopathologia is a forum for those working in the field of pediatric asthma, allergy and immunology. Manuscripts related to clinical, epidemiological and experimental allergy and immunopathology related to childhood will be considered for publication. Allergologia et Immunopathologia is the official journal of the Spanish Society of Pediatric Allergy and Clinical Immunology (SEICAP) and also of the Latin American Society of Immunodeficiencies (LASID). It has and independent international Editorial Committee which submits received papers for peer-reviewing by international experts. The journal accepts original and review articles from all over the world, together with consensus statements from the aforementioned societies. Occasionally, the opinion of an expert on a burning topic is published in the "Point of View" section. Letters to the Editor on previously published papers are welcomed. Allergologia et Immunopathologia publishes 6 issues per year and is included in the major databases such as Pubmed, Scopus, Web of Knowledge, etc.