Weishen Zhong , Genpei Zhang , Kai Yue , Yongmei Song , Zitong Zhao
{"title":"MMP2酶反应性细胞外囊泡作为双靶向载体促进巨噬细胞的吞噬作用。","authors":"Weishen Zhong , Genpei Zhang , Kai Yue , Yongmei Song , Zitong Zhao","doi":"10.1016/j.colsurfb.2024.114365","DOIUrl":null,"url":null,"abstract":"<div><div>Combination therapy using inhibition of tumor cell escape and alteration of the tumor microenvironment offers a new strategy for cancer treatment. This study aimed to develop an extracellular vesicle (EV) carrier that regulates tumor cells and the tumor microenvironment to achieve efficient tumor immunotherapy. The ligand modified on carriers targets the immune checkpoint CD47 protein, blocking tumor cell escape. This ligand is cleaved by the MMP2 enzyme and assembles into nanofibers, extending the retention time in the tumor. The carriers target the CD206 protein, enabling efficient uptake by M2 macrophages. Carriers with a high density of ligands (anti-CD206) exhibit strong receptor<img>ligand interactions with tumor cells. Due to their high rigidity, these EVs have difficulty deforming during the transmembrane process, reducing resistance and resulting in low uptake efficiency by M2 cells. The optimal uptake efficiency by M2 macrophages is achieved when the mass ratio of ligand to EVs is 1:25. Crocin loaded in EVs facilitates the polarization of M2 macrophages into M1 cells, which can phagocytize tumor cells. This study reveals a potential strategy for using extracellular vesicles in tumor treatment.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"246 ","pages":"Article 114365"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MMP2 enzyme-responsive extracellular vesicles as dual-targeted carriers to promote the phagocytosis of macrophages\",\"authors\":\"Weishen Zhong , Genpei Zhang , Kai Yue , Yongmei Song , Zitong Zhao\",\"doi\":\"10.1016/j.colsurfb.2024.114365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Combination therapy using inhibition of tumor cell escape and alteration of the tumor microenvironment offers a new strategy for cancer treatment. This study aimed to develop an extracellular vesicle (EV) carrier that regulates tumor cells and the tumor microenvironment to achieve efficient tumor immunotherapy. The ligand modified on carriers targets the immune checkpoint CD47 protein, blocking tumor cell escape. This ligand is cleaved by the MMP2 enzyme and assembles into nanofibers, extending the retention time in the tumor. The carriers target the CD206 protein, enabling efficient uptake by M2 macrophages. Carriers with a high density of ligands (anti-CD206) exhibit strong receptor<img>ligand interactions with tumor cells. Due to their high rigidity, these EVs have difficulty deforming during the transmembrane process, reducing resistance and resulting in low uptake efficiency by M2 cells. The optimal uptake efficiency by M2 macrophages is achieved when the mass ratio of ligand to EVs is 1:25. Crocin loaded in EVs facilitates the polarization of M2 macrophages into M1 cells, which can phagocytize tumor cells. This study reveals a potential strategy for using extracellular vesicles in tumor treatment.</div></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"246 \",\"pages\":\"Article 114365\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776524006246\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524006246","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
MMP2 enzyme-responsive extracellular vesicles as dual-targeted carriers to promote the phagocytosis of macrophages
Combination therapy using inhibition of tumor cell escape and alteration of the tumor microenvironment offers a new strategy for cancer treatment. This study aimed to develop an extracellular vesicle (EV) carrier that regulates tumor cells and the tumor microenvironment to achieve efficient tumor immunotherapy. The ligand modified on carriers targets the immune checkpoint CD47 protein, blocking tumor cell escape. This ligand is cleaved by the MMP2 enzyme and assembles into nanofibers, extending the retention time in the tumor. The carriers target the CD206 protein, enabling efficient uptake by M2 macrophages. Carriers with a high density of ligands (anti-CD206) exhibit strong receptorligand interactions with tumor cells. Due to their high rigidity, these EVs have difficulty deforming during the transmembrane process, reducing resistance and resulting in low uptake efficiency by M2 cells. The optimal uptake efficiency by M2 macrophages is achieved when the mass ratio of ligand to EVs is 1:25. Crocin loaded in EVs facilitates the polarization of M2 macrophages into M1 cells, which can phagocytize tumor cells. This study reveals a potential strategy for using extracellular vesicles in tumor treatment.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.