Jumanah Bahig , Hira Syeda , Ahmed Shoker , Huu Doan , Amira Abdelrasoul
{"title":"人血清蛋白的 pH 值动态对透析膜的影响:密码学结构评估、膜蛋白吸附同步辐射成像和分子对接研究。","authors":"Jumanah Bahig , Hira Syeda , Ahmed Shoker , Huu Doan , Amira Abdelrasoul","doi":"10.1016/j.colsurfb.2024.114354","DOIUrl":null,"url":null,"abstract":"<div><div>Proteins are fundamental to biochemical processes and critical in hemodialysis. This study investigates the impact of pH on human serum albumin (HSA), fibrinogen (FB), and transferrin (TRF) interactions with polyarylethersulfone (PAES) hemodialysis membranes. A multi-method approach was utilized, including protein crystallography for structural insights, hydration layer analysis to explore solvation and interaction potentials, molecular docking using AutoDock 4.0 for binding affinity simulations, and in-situ X-ray synchrotron SR-μCT imaging to observe protein deposition dynamics. Molecular docking revealed that PAES demonstrated superior binding energies and interaction patterns with FB and TRF compared to cellulose triacetate (CTA), facilitated by specific hydrogen bonding within a water shell. CTA displayed weaker, hydration-sensitive interactions varying with pH. Imaging studies indicated that FB showed higher adsorption at pH 6 than at pH 7.2, predominantly in the middle membrane regions. Similarly, HSA and TRF exhibited increased adsorption at pH 6, suggesting a stronger affinity under acidic conditions. Mixed protein solutions also indicated higher adsorption at pH 6, emphasizing an increased risk of membrane fouling. These findings highlight the crucial role of pH in modulating protein-membrane interactions and enhancing the efficacy of hemodialysis. A deeper understanding of hydration environments and their effects on protein binding affinities provides valuable insights for optimizing membrane design and performance. Clinically, this research suggests that fine-tuning pH during hemodialysis could mitigate protein fouling on membranes, thereby improving procedural efficiency and potentially leading to better patient outcomes through enhanced dialysis effectiveness.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"246 ","pages":"Article 114354"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of pH-dependent dynamics of human serum proteins on dialysis membranes: Cryptographic structure assessment, synchrotron imaging of membrane-protein adsorption, and molecular docking studies\",\"authors\":\"Jumanah Bahig , Hira Syeda , Ahmed Shoker , Huu Doan , Amira Abdelrasoul\",\"doi\":\"10.1016/j.colsurfb.2024.114354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Proteins are fundamental to biochemical processes and critical in hemodialysis. This study investigates the impact of pH on human serum albumin (HSA), fibrinogen (FB), and transferrin (TRF) interactions with polyarylethersulfone (PAES) hemodialysis membranes. A multi-method approach was utilized, including protein crystallography for structural insights, hydration layer analysis to explore solvation and interaction potentials, molecular docking using AutoDock 4.0 for binding affinity simulations, and in-situ X-ray synchrotron SR-μCT imaging to observe protein deposition dynamics. Molecular docking revealed that PAES demonstrated superior binding energies and interaction patterns with FB and TRF compared to cellulose triacetate (CTA), facilitated by specific hydrogen bonding within a water shell. CTA displayed weaker, hydration-sensitive interactions varying with pH. Imaging studies indicated that FB showed higher adsorption at pH 6 than at pH 7.2, predominantly in the middle membrane regions. Similarly, HSA and TRF exhibited increased adsorption at pH 6, suggesting a stronger affinity under acidic conditions. Mixed protein solutions also indicated higher adsorption at pH 6, emphasizing an increased risk of membrane fouling. These findings highlight the crucial role of pH in modulating protein-membrane interactions and enhancing the efficacy of hemodialysis. A deeper understanding of hydration environments and their effects on protein binding affinities provides valuable insights for optimizing membrane design and performance. Clinically, this research suggests that fine-tuning pH during hemodialysis could mitigate protein fouling on membranes, thereby improving procedural efficiency and potentially leading to better patient outcomes through enhanced dialysis effectiveness.</div></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"246 \",\"pages\":\"Article 114354\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776524006131\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524006131","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Impact of pH-dependent dynamics of human serum proteins on dialysis membranes: Cryptographic structure assessment, synchrotron imaging of membrane-protein adsorption, and molecular docking studies
Proteins are fundamental to biochemical processes and critical in hemodialysis. This study investigates the impact of pH on human serum albumin (HSA), fibrinogen (FB), and transferrin (TRF) interactions with polyarylethersulfone (PAES) hemodialysis membranes. A multi-method approach was utilized, including protein crystallography for structural insights, hydration layer analysis to explore solvation and interaction potentials, molecular docking using AutoDock 4.0 for binding affinity simulations, and in-situ X-ray synchrotron SR-μCT imaging to observe protein deposition dynamics. Molecular docking revealed that PAES demonstrated superior binding energies and interaction patterns with FB and TRF compared to cellulose triacetate (CTA), facilitated by specific hydrogen bonding within a water shell. CTA displayed weaker, hydration-sensitive interactions varying with pH. Imaging studies indicated that FB showed higher adsorption at pH 6 than at pH 7.2, predominantly in the middle membrane regions. Similarly, HSA and TRF exhibited increased adsorption at pH 6, suggesting a stronger affinity under acidic conditions. Mixed protein solutions also indicated higher adsorption at pH 6, emphasizing an increased risk of membrane fouling. These findings highlight the crucial role of pH in modulating protein-membrane interactions and enhancing the efficacy of hemodialysis. A deeper understanding of hydration environments and their effects on protein binding affinities provides valuable insights for optimizing membrane design and performance. Clinically, this research suggests that fine-tuning pH during hemodialysis could mitigate protein fouling on membranes, thereby improving procedural efficiency and potentially leading to better patient outcomes through enhanced dialysis effectiveness.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.