{"title":"利用铈纳米粒子功能化的氧化石墨烯阻抗传感器对乳腺癌生物标记物进行非侵入式超灵敏检测。","authors":"Arpana Parihar , Preeti Vishwakarma , Pradeep Prajapati , Raju khan","doi":"10.1016/j.bios.2024.116925","DOIUrl":null,"url":null,"abstract":"<div><div>Epidermal growth factor receptor (EGFR) is a transmembrane protein and a key biomarker implicated in the pathogenesis of breast cancer. Early and precise detection of EGFR is crucial for effective diagnosis, prognosis, and therapeutic intervention. However, conventional EGFR detection techniques, such as biopsy and immunohistochemistry, are often invasive, time-consuming, and limited in sensitivity, highlighting the demand for non-invasive, highly sensitive detection methods. In this study, we fabricated a cerium oxide (CeO₂) and graphene oxide (GO) nanocomposite-based aptasensor for the non-invasive detection of EGFR using electrochemical impedance spectroscopy (EIS). The CeO₂-GO nanocomposite was synthesized via the sol-gel method and characterized through UV–Vis spectroscopy, FTIR, TEM, and XRD, confirming the crystalline structure of hexagonal CeO₂ nanoparticles on amorphous GO sheets. The nanocomposite was functionalized with aptamers specific to EGFR using covalent coupling reactions. The EIS analysis of the fabricated aptasensor (GCE/CeO₂-GO/EGFR-Apt/BSA) demonstrated a wide linear detection range from 10 fg mL<sup>-1</sup> to 100 ng mL<sup>-1</sup>, with an ultralow detection limit of 1.87 fg mL<sup>-1</sup> in PBS, 3.16 fg mL<sup>-1</sup> in serum, 5.31 fg mL<sup>-1</sup> in sweat, and 6.14 fg mL<sup>-1</sup> in saliva samples. These results highlight the aptasensor's high sensitivity, specificity, and potential for real-time, non-invasive EGFR monitoring in clinical samples such as serum, sweat, and saliva. This approach would facilitate early detection of cancer and personalized diagnostics in point-of-care settings.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"268 ","pages":"Article 116925"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-invasive ultra-sensitive detection of breast cancer biomarker using cerium nanoparticle functionalized graphene oxide enabled impedimetric aptasensor\",\"authors\":\"Arpana Parihar , Preeti Vishwakarma , Pradeep Prajapati , Raju khan\",\"doi\":\"10.1016/j.bios.2024.116925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Epidermal growth factor receptor (EGFR) is a transmembrane protein and a key biomarker implicated in the pathogenesis of breast cancer. Early and precise detection of EGFR is crucial for effective diagnosis, prognosis, and therapeutic intervention. However, conventional EGFR detection techniques, such as biopsy and immunohistochemistry, are often invasive, time-consuming, and limited in sensitivity, highlighting the demand for non-invasive, highly sensitive detection methods. In this study, we fabricated a cerium oxide (CeO₂) and graphene oxide (GO) nanocomposite-based aptasensor for the non-invasive detection of EGFR using electrochemical impedance spectroscopy (EIS). The CeO₂-GO nanocomposite was synthesized via the sol-gel method and characterized through UV–Vis spectroscopy, FTIR, TEM, and XRD, confirming the crystalline structure of hexagonal CeO₂ nanoparticles on amorphous GO sheets. The nanocomposite was functionalized with aptamers specific to EGFR using covalent coupling reactions. The EIS analysis of the fabricated aptasensor (GCE/CeO₂-GO/EGFR-Apt/BSA) demonstrated a wide linear detection range from 10 fg mL<sup>-1</sup> to 100 ng mL<sup>-1</sup>, with an ultralow detection limit of 1.87 fg mL<sup>-1</sup> in PBS, 3.16 fg mL<sup>-1</sup> in serum, 5.31 fg mL<sup>-1</sup> in sweat, and 6.14 fg mL<sup>-1</sup> in saliva samples. These results highlight the aptasensor's high sensitivity, specificity, and potential for real-time, non-invasive EGFR monitoring in clinical samples such as serum, sweat, and saliva. This approach would facilitate early detection of cancer and personalized diagnostics in point-of-care settings.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"268 \",\"pages\":\"Article 116925\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566324009321\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566324009321","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Non-invasive ultra-sensitive detection of breast cancer biomarker using cerium nanoparticle functionalized graphene oxide enabled impedimetric aptasensor
Epidermal growth factor receptor (EGFR) is a transmembrane protein and a key biomarker implicated in the pathogenesis of breast cancer. Early and precise detection of EGFR is crucial for effective diagnosis, prognosis, and therapeutic intervention. However, conventional EGFR detection techniques, such as biopsy and immunohistochemistry, are often invasive, time-consuming, and limited in sensitivity, highlighting the demand for non-invasive, highly sensitive detection methods. In this study, we fabricated a cerium oxide (CeO₂) and graphene oxide (GO) nanocomposite-based aptasensor for the non-invasive detection of EGFR using electrochemical impedance spectroscopy (EIS). The CeO₂-GO nanocomposite was synthesized via the sol-gel method and characterized through UV–Vis spectroscopy, FTIR, TEM, and XRD, confirming the crystalline structure of hexagonal CeO₂ nanoparticles on amorphous GO sheets. The nanocomposite was functionalized with aptamers specific to EGFR using covalent coupling reactions. The EIS analysis of the fabricated aptasensor (GCE/CeO₂-GO/EGFR-Apt/BSA) demonstrated a wide linear detection range from 10 fg mL-1 to 100 ng mL-1, with an ultralow detection limit of 1.87 fg mL-1 in PBS, 3.16 fg mL-1 in serum, 5.31 fg mL-1 in sweat, and 6.14 fg mL-1 in saliva samples. These results highlight the aptasensor's high sensitivity, specificity, and potential for real-time, non-invasive EGFR monitoring in clinical samples such as serum, sweat, and saliva. This approach would facilitate early detection of cancer and personalized diagnostics in point-of-care settings.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.