Jing Huang , Jun Li , Xiaoyu Han , Zedong Lu , Shujun Zhang , Zehao Zhang
{"title":"好氧颗粒污泥可增强单级部分亚硝酸盐化厌氧发酵颗粒污泥系统的启动和颗粒化:性能、机理和细菌群落的变化。","authors":"Jing Huang , Jun Li , Xiaoyu Han , Zedong Lu , Shujun Zhang , Zehao Zhang","doi":"10.1016/j.biortech.2024.131760","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid start-up and granulation of a single-stage partial nitritation anammox granular sludge (PN/AnGS) system under limited seed sludge conditions is crucial for its practical application. This study proposed an aerobic granular sludge (AGS) − based strategy, enhanced the enrichment of anammox bacteria (AnAOB), and shortened the start-up time of PN/AnGS system by 20.5%. In addition, the inoculation of AGS can ensure the stable operation of the system during the selective sludge discharge to washout the flocs. Microbial community structure, particle size distribution, morphology results showed that niche shift was the key to promote the enrichment of AnAOB, and AGS played a decisive role in the particle characteristics of PN/AnGS. Since AGS can be directly obtained from full-scale AGS wastewater treatment plants, integrating PN/AnGS with AGS processes can transition wastewater treatment from a “linear economy” to a “circular economy”, enhancing nitrogen removal efficiency and delivering significant economic and environmental benefits.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131760"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerobic granular sludge enhances start-up and granulation in single-stage partial nitritation anammox granular sludge systems: Performance, mechanism, and shifts in bacterial communities\",\"authors\":\"Jing Huang , Jun Li , Xiaoyu Han , Zedong Lu , Shujun Zhang , Zehao Zhang\",\"doi\":\"10.1016/j.biortech.2024.131760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid start-up and granulation of a single-stage partial nitritation anammox granular sludge (PN/AnGS) system under limited seed sludge conditions is crucial for its practical application. This study proposed an aerobic granular sludge (AGS) − based strategy, enhanced the enrichment of anammox bacteria (AnAOB), and shortened the start-up time of PN/AnGS system by 20.5%. In addition, the inoculation of AGS can ensure the stable operation of the system during the selective sludge discharge to washout the flocs. Microbial community structure, particle size distribution, morphology results showed that niche shift was the key to promote the enrichment of AnAOB, and AGS played a decisive role in the particle characteristics of PN/AnGS. Since AGS can be directly obtained from full-scale AGS wastewater treatment plants, integrating PN/AnGS with AGS processes can transition wastewater treatment from a “linear economy” to a “circular economy”, enhancing nitrogen removal efficiency and delivering significant economic and environmental benefits.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"416 \",\"pages\":\"Article 131760\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852424014640\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424014640","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Aerobic granular sludge enhances start-up and granulation in single-stage partial nitritation anammox granular sludge systems: Performance, mechanism, and shifts in bacterial communities
The rapid start-up and granulation of a single-stage partial nitritation anammox granular sludge (PN/AnGS) system under limited seed sludge conditions is crucial for its practical application. This study proposed an aerobic granular sludge (AGS) − based strategy, enhanced the enrichment of anammox bacteria (AnAOB), and shortened the start-up time of PN/AnGS system by 20.5%. In addition, the inoculation of AGS can ensure the stable operation of the system during the selective sludge discharge to washout the flocs. Microbial community structure, particle size distribution, morphology results showed that niche shift was the key to promote the enrichment of AnAOB, and AGS played a decisive role in the particle characteristics of PN/AnGS. Since AGS can be directly obtained from full-scale AGS wastewater treatment plants, integrating PN/AnGS with AGS processes can transition wastewater treatment from a “linear economy” to a “circular economy”, enhancing nitrogen removal efficiency and delivering significant economic and environmental benefits.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.