磁铁矿介导的种间直接电子传递在引导电子从含硫酸盐的废水中产生甲烷的过程中并没有发挥关键作用。

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Zhu Liang , Wei Ding , Xinhou Zhang , Yun Chen , Nan Shen
{"title":"磁铁矿介导的种间直接电子传递在引导电子从含硫酸盐的废水中产生甲烷的过程中并没有发挥关键作用。","authors":"Zhu Liang ,&nbsp;Wei Ding ,&nbsp;Xinhou Zhang ,&nbsp;Yun Chen ,&nbsp;Nan Shen","doi":"10.1016/j.biortech.2024.131809","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfate reduction can compete for electrons with methane production, thereby reducing methane production. Several factors, such as magnetite addition, carbon sources, and the chemical oxygen demand (COD)/SO<sub>4</sub><sup>2−</sup> ratio, can influence the direction of electron flow toward methanogenesis. However, their contributions to methane production remain unclear. In this study, the addition of magnetite significantly enhanced the maximum methane production rate (<em>R<sub>max</sub></em>). The enrichment of <em>Methanothrix</em> and <em>Methanobacterium</em> in the conductive material groups indicated the establishment of a methanogenesis process through direct interspecies electron transfer (DIET). Although the DIET pathway enhanced <em>R<sub>max</sub></em> in the conductive material groups, this increase did not translate into a higher methane yield in this study. The contribution of DIET pathway to methane yield was negligible compared with the effect of COD/SO<sub>4</sub><sup>2−</sup> ratio and carbon sources. The relative contribution of COD/SO<sub>4</sub><sup>2−</sup> ratio exceeded 40 % in directing electron flow.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131809"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetite-mediating direct interspecies electron transfer is not pivotal role in directing electrons toward methane production from sulfate containing wastewater\",\"authors\":\"Zhu Liang ,&nbsp;Wei Ding ,&nbsp;Xinhou Zhang ,&nbsp;Yun Chen ,&nbsp;Nan Shen\",\"doi\":\"10.1016/j.biortech.2024.131809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sulfate reduction can compete for electrons with methane production, thereby reducing methane production. Several factors, such as magnetite addition, carbon sources, and the chemical oxygen demand (COD)/SO<sub>4</sub><sup>2−</sup> ratio, can influence the direction of electron flow toward methanogenesis. However, their contributions to methane production remain unclear. In this study, the addition of magnetite significantly enhanced the maximum methane production rate (<em>R<sub>max</sub></em>). The enrichment of <em>Methanothrix</em> and <em>Methanobacterium</em> in the conductive material groups indicated the establishment of a methanogenesis process through direct interspecies electron transfer (DIET). Although the DIET pathway enhanced <em>R<sub>max</sub></em> in the conductive material groups, this increase did not translate into a higher methane yield in this study. The contribution of DIET pathway to methane yield was negligible compared with the effect of COD/SO<sub>4</sub><sup>2−</sup> ratio and carbon sources. The relative contribution of COD/SO<sub>4</sub><sup>2−</sup> ratio exceeded 40 % in directing electron flow.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"416 \",\"pages\":\"Article 131809\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096085242401513X\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096085242401513X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

硫酸盐还原会与甲烷生成竞争电子,从而减少甲烷生成。磁铁矿的添加、碳源和化学需氧量 (COD)/SO42- 比率等多种因素都会影响电子流向甲烷生成的方向。然而,这些因素对甲烷产生的影响尚不明确。在本研究中,磁铁矿的添加显著提高了甲烷的最大生产率(Rmax)。导电材料组中 Methanothrix 和 Methanobacterium 的富集表明,通过种间直接电子传递(DIET)建立了甲烷生成过程。虽然 DIET 途径提高了导电材料组的 Rmax,但在本研究中,这种提高并没有转化为更高的甲烷产量。与 COD/SO42- 比率和碳源的影响相比,DIET 途径对甲烷产量的贡献可以忽略不计。COD/SO42- 比率在引导电子流方面的相对贡献超过 40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetite-mediating direct interspecies electron transfer is not pivotal role in directing electrons toward methane production from sulfate containing wastewater

Magnetite-mediating direct interspecies electron transfer is not pivotal role in directing electrons toward methane production from sulfate containing wastewater
Sulfate reduction can compete for electrons with methane production, thereby reducing methane production. Several factors, such as magnetite addition, carbon sources, and the chemical oxygen demand (COD)/SO42− ratio, can influence the direction of electron flow toward methanogenesis. However, their contributions to methane production remain unclear. In this study, the addition of magnetite significantly enhanced the maximum methane production rate (Rmax). The enrichment of Methanothrix and Methanobacterium in the conductive material groups indicated the establishment of a methanogenesis process through direct interspecies electron transfer (DIET). Although the DIET pathway enhanced Rmax in the conductive material groups, this increase did not translate into a higher methane yield in this study. The contribution of DIET pathway to methane yield was negligible compared with the effect of COD/SO42− ratio and carbon sources. The relative contribution of COD/SO42− ratio exceeded 40 % in directing electron flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信