{"title":"dbAMP 3.0:后流行病时代多肽抗菌活性和结构注释的最新资源","authors":"Lantian Yao, Jiahui Guan, Peilin Xie, Chia-Ru Chung, Zhihao Zhao, Danhong Dong, Yilin Guo, Wenyang Zhang, Junyang Deng, Yuxuan Pang, Yulan Liu, Yunlu Peng, Jorng-Tzong Horng, Ying-Chih Chiang, Tzong-Yi Lee","doi":"10.1093/nar/gkae1019","DOIUrl":null,"url":null,"abstract":"Antimicrobial resistance is one of the most urgent global health threats, especially in the post-pandemic era. Antimicrobial peptides (AMPs) offer a promising alternative to traditional antibiotics, driving growing interest in recent years. dbAMP is a comprehensive database offering extensive annotations on AMPs, including sequence information, functional activity data, physicochemical properties and structural annotations. In this update, dbAMP has curated data from over 5200 publications, encompassing 33,065 AMPs and 2453 antimicrobial proteins from 3534 organisms. Additionally, dbAMP utilizes ESMFold to determine the three-dimensional structures of AMPs, providing over 30,000 structural annotations that facilitate structure-based functional insights for clinical drug development. Furthermore, dbAMP employs molecular docking techniques, providing over 100 docked complexes that contribute useful insights into the potential mechanisms of AMPs. The toxicity and stability of AMPs are critical factors in assessing their potential as clinical drugs. The updated dbAMP introduced an efficient tool for evaluating the hemolytic toxicity and half-life of AMPs, alongside an AMP optimization platform for designing AMPs with high antimicrobial activity, reduced toxicity and increased stability. The updated dbAMP is freely accessible at https://awi.cuhk.edu.cn/dbAMP/. Overall, dbAMP represents a comprehensive and essential resource for AMP analysis and design, poised to advance antimicrobial strategies in the post-pandemic era.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"64 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"dbAMP 3.0: updated resource of antimicrobial activity and structural annotation of peptides in the post-pandemic era\",\"authors\":\"Lantian Yao, Jiahui Guan, Peilin Xie, Chia-Ru Chung, Zhihao Zhao, Danhong Dong, Yilin Guo, Wenyang Zhang, Junyang Deng, Yuxuan Pang, Yulan Liu, Yunlu Peng, Jorng-Tzong Horng, Ying-Chih Chiang, Tzong-Yi Lee\",\"doi\":\"10.1093/nar/gkae1019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antimicrobial resistance is one of the most urgent global health threats, especially in the post-pandemic era. Antimicrobial peptides (AMPs) offer a promising alternative to traditional antibiotics, driving growing interest in recent years. dbAMP is a comprehensive database offering extensive annotations on AMPs, including sequence information, functional activity data, physicochemical properties and structural annotations. In this update, dbAMP has curated data from over 5200 publications, encompassing 33,065 AMPs and 2453 antimicrobial proteins from 3534 organisms. Additionally, dbAMP utilizes ESMFold to determine the three-dimensional structures of AMPs, providing over 30,000 structural annotations that facilitate structure-based functional insights for clinical drug development. Furthermore, dbAMP employs molecular docking techniques, providing over 100 docked complexes that contribute useful insights into the potential mechanisms of AMPs. The toxicity and stability of AMPs are critical factors in assessing their potential as clinical drugs. The updated dbAMP introduced an efficient tool for evaluating the hemolytic toxicity and half-life of AMPs, alongside an AMP optimization platform for designing AMPs with high antimicrobial activity, reduced toxicity and increased stability. The updated dbAMP is freely accessible at https://awi.cuhk.edu.cn/dbAMP/. Overall, dbAMP represents a comprehensive and essential resource for AMP analysis and design, poised to advance antimicrobial strategies in the post-pandemic era.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae1019\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1019","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
dbAMP 3.0: updated resource of antimicrobial activity and structural annotation of peptides in the post-pandemic era
Antimicrobial resistance is one of the most urgent global health threats, especially in the post-pandemic era. Antimicrobial peptides (AMPs) offer a promising alternative to traditional antibiotics, driving growing interest in recent years. dbAMP is a comprehensive database offering extensive annotations on AMPs, including sequence information, functional activity data, physicochemical properties and structural annotations. In this update, dbAMP has curated data from over 5200 publications, encompassing 33,065 AMPs and 2453 antimicrobial proteins from 3534 organisms. Additionally, dbAMP utilizes ESMFold to determine the three-dimensional structures of AMPs, providing over 30,000 structural annotations that facilitate structure-based functional insights for clinical drug development. Furthermore, dbAMP employs molecular docking techniques, providing over 100 docked complexes that contribute useful insights into the potential mechanisms of AMPs. The toxicity and stability of AMPs are critical factors in assessing their potential as clinical drugs. The updated dbAMP introduced an efficient tool for evaluating the hemolytic toxicity and half-life of AMPs, alongside an AMP optimization platform for designing AMPs with high antimicrobial activity, reduced toxicity and increased stability. The updated dbAMP is freely accessible at https://awi.cuhk.edu.cn/dbAMP/. Overall, dbAMP represents a comprehensive and essential resource for AMP analysis and design, poised to advance antimicrobial strategies in the post-pandemic era.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.