{"title":"基态和热态模拟的变分后选择","authors":"Shi-Xin Zhang, Jiaqi Miao and Chang-Yu Hsieh","doi":"10.1088/2058-9565/ad8fca","DOIUrl":null,"url":null,"abstract":"Variational quantum algorithms, as one of the most promising routes in the noisy intermediate-scale quantum era, offer various potential applications while also confronting severe challenges due to near-term quantum hardware restrictions. In this work, we propose a framework to enhance the expressiveness of a variational quantum ansatz by incorporating variational post-selection techniques. These techniques apply variational modules and neural network post-processing on ancilla qubits, which are compatible with the current generation of quantum devices. Equipped with variational post-selection, we demonstrate that the accuracy of the variational ground state and thermal state preparation for both quantum spin and molecule systems is substantially improved. Notably, in the case of estimating the local properties of a thermalized quantum system, we present a scalable approach that outperforms previous methods through the combination of neural post-selection and a new optimization objective.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational post-selection for ground states and thermal states simulation\",\"authors\":\"Shi-Xin Zhang, Jiaqi Miao and Chang-Yu Hsieh\",\"doi\":\"10.1088/2058-9565/ad8fca\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variational quantum algorithms, as one of the most promising routes in the noisy intermediate-scale quantum era, offer various potential applications while also confronting severe challenges due to near-term quantum hardware restrictions. In this work, we propose a framework to enhance the expressiveness of a variational quantum ansatz by incorporating variational post-selection techniques. These techniques apply variational modules and neural network post-processing on ancilla qubits, which are compatible with the current generation of quantum devices. Equipped with variational post-selection, we demonstrate that the accuracy of the variational ground state and thermal state preparation for both quantum spin and molecule systems is substantially improved. Notably, in the case of estimating the local properties of a thermalized quantum system, we present a scalable approach that outperforms previous methods through the combination of neural post-selection and a new optimization objective.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad8fca\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad8fca","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Variational post-selection for ground states and thermal states simulation
Variational quantum algorithms, as one of the most promising routes in the noisy intermediate-scale quantum era, offer various potential applications while also confronting severe challenges due to near-term quantum hardware restrictions. In this work, we propose a framework to enhance the expressiveness of a variational quantum ansatz by incorporating variational post-selection techniques. These techniques apply variational modules and neural network post-processing on ancilla qubits, which are compatible with the current generation of quantum devices. Equipped with variational post-selection, we demonstrate that the accuracy of the variational ground state and thermal state preparation for both quantum spin and molecule systems is substantially improved. Notably, in the case of estimating the local properties of a thermalized quantum system, we present a scalable approach that outperforms previous methods through the combination of neural post-selection and a new optimization objective.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.