{"title":"通过氮化碳上的活性氢调节实现大电流二氧化碳电甲烷化","authors":"Tianxiang Yan, Yaxin Jin, Qun Fan, Hai Liu, Xindi Li, Tianying Zhang, Hui Wang, Jianlong Lin, Haoyuan Chi, Sheng Zhang, Xinbin Ma","doi":"10.1002/smll.202408600","DOIUrl":null,"url":null,"abstract":"Electromethanation of CO<sub>2</sub> has received intensive attention due to its high calorific value and convenient storage along with transportation to accommodate industrial demands. However, it is limited by sluggish multi-step proton-coupled electron transfer kinetics and undesired <sup>*</sup>H coupling under high current density, posing great challenges to its commercialization. Herein, carbon nitride (CN) with superior hydrogen adsorption ability is used as an active-hydrogen adsorption and supply material. Through a facile liquid-assisted exfoliation and electrostatic self-assembly strategy to strengthen its interfacial contacts with Cu<sub>2</sub>O catalysts, yielding a strengthened CH<sub>4</sub> production 52 times higher than that of pristine Cu<sub>2</sub>O. Flow-cell test ultimately achieved FE<sub>CH4</sub> and remarkably CH<sub>4</sub> partial current density of 61% and 561 mA cm<sup>−2</sup>, respectively. With in situ ATR-FTIR spectra and DFT calculations, it is established that strengthened interfaces enabled abundant <sup>*</sup>H tethered by ─C─N═C─ sites in CN nanosheets and oriented to the <sup>*</sup>CO hydrogenation to <sup>*</sup>CHO and <sup>*</sup>CHx on Cu species. This work reveals the profound influence of fine-expanded interfaces with dimensional materials on the product distribution and yield through the active-hydrogen management, which is of reference value for other small-molecule electro-polarization dominated by the proton-coupled electron transfer (PCET) process (e.g., N<sub>2</sub>, O<sub>2</sub>, etc.).","PeriodicalId":228,"journal":{"name":"Small","volume":"69 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Current CO2 Electromethanation Through Active Hydrogen Regulation Over Carbon Nitride\",\"authors\":\"Tianxiang Yan, Yaxin Jin, Qun Fan, Hai Liu, Xindi Li, Tianying Zhang, Hui Wang, Jianlong Lin, Haoyuan Chi, Sheng Zhang, Xinbin Ma\",\"doi\":\"10.1002/smll.202408600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromethanation of CO<sub>2</sub> has received intensive attention due to its high calorific value and convenient storage along with transportation to accommodate industrial demands. However, it is limited by sluggish multi-step proton-coupled electron transfer kinetics and undesired <sup>*</sup>H coupling under high current density, posing great challenges to its commercialization. Herein, carbon nitride (CN) with superior hydrogen adsorption ability is used as an active-hydrogen adsorption and supply material. Through a facile liquid-assisted exfoliation and electrostatic self-assembly strategy to strengthen its interfacial contacts with Cu<sub>2</sub>O catalysts, yielding a strengthened CH<sub>4</sub> production 52 times higher than that of pristine Cu<sub>2</sub>O. Flow-cell test ultimately achieved FE<sub>CH4</sub> and remarkably CH<sub>4</sub> partial current density of 61% and 561 mA cm<sup>−2</sup>, respectively. With in situ ATR-FTIR spectra and DFT calculations, it is established that strengthened interfaces enabled abundant <sup>*</sup>H tethered by ─C─N═C─ sites in CN nanosheets and oriented to the <sup>*</sup>CO hydrogenation to <sup>*</sup>CHO and <sup>*</sup>CHx on Cu species. This work reveals the profound influence of fine-expanded interfaces with dimensional materials on the product distribution and yield through the active-hydrogen management, which is of reference value for other small-molecule electro-polarization dominated by the proton-coupled electron transfer (PCET) process (e.g., N<sub>2</sub>, O<sub>2</sub>, etc.).\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202408600\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408600","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Large-Current CO2 Electromethanation Through Active Hydrogen Regulation Over Carbon Nitride
Electromethanation of CO2 has received intensive attention due to its high calorific value and convenient storage along with transportation to accommodate industrial demands. However, it is limited by sluggish multi-step proton-coupled electron transfer kinetics and undesired *H coupling under high current density, posing great challenges to its commercialization. Herein, carbon nitride (CN) with superior hydrogen adsorption ability is used as an active-hydrogen adsorption and supply material. Through a facile liquid-assisted exfoliation and electrostatic self-assembly strategy to strengthen its interfacial contacts with Cu2O catalysts, yielding a strengthened CH4 production 52 times higher than that of pristine Cu2O. Flow-cell test ultimately achieved FECH4 and remarkably CH4 partial current density of 61% and 561 mA cm−2, respectively. With in situ ATR-FTIR spectra and DFT calculations, it is established that strengthened interfaces enabled abundant *H tethered by ─C─N═C─ sites in CN nanosheets and oriented to the *CO hydrogenation to *CHO and *CHx on Cu species. This work reveals the profound influence of fine-expanded interfaces with dimensional materials on the product distribution and yield through the active-hydrogen management, which is of reference value for other small-molecule electro-polarization dominated by the proton-coupled electron transfer (PCET) process (e.g., N2, O2, etc.).
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.