通过化学气相沉积和低温电子束图案化稳定金属卤化物包光体薄膜

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Randy Burns, Dylan Chiaro, Harrison Davison, Christopher J. Arendse, Gavin M. King, Suchismita Guha
{"title":"通过化学气相沉积和低温电子束图案化稳定金属卤化物包光体薄膜","authors":"Randy Burns, Dylan Chiaro, Harrison Davison, Christopher J. Arendse, Gavin M. King, Suchismita Guha","doi":"10.1002/smll.202406815","DOIUrl":null,"url":null,"abstract":"Halide perovskites are hailed as semiconductors of the 21<sup>st</sup> century. Chemical vapor deposition (CVD), a solvent-free method, allows versatility in the growth of thin films of 3- and 2D organic–inorganic halide perovskites. Using CVD grown methylammonium lead iodide (MAPbI<sub>3</sub>) films as a prototype, the impact of electron beam dosage under cryogenic conditions is evaluated. With 5 kV accelerating voltage, the dosage is varied between 50 and 50000 µC cm<sup>−2</sup>. An optimum dosage of 35 000 µC cm<sup>−2</sup> results in a significant blue shift and enhancement of the photoluminescence peak. Concomitantly, a strong increase in the photocurrent is observed. A similar electron beam treatment on chlorine incorporated MAPbI<sub>3</sub>, where chlorine is known to passivate defects, shows a blue shift in the photoluminescence without improving the photocurrent properties. Low electron beam dosage under cryogenic conditions is found to damage CVD grown 2D phenylethlyammoinum lead iodide films. Monte Carlo simulations reveal differences in electron beam interaction with 3- and 2D halide perovskite films.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"10 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing Metal Halide Perovskite Films via Chemical Vapor Deposition and Cryogenic Electron Beam Patterning\",\"authors\":\"Randy Burns, Dylan Chiaro, Harrison Davison, Christopher J. Arendse, Gavin M. King, Suchismita Guha\",\"doi\":\"10.1002/smll.202406815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Halide perovskites are hailed as semiconductors of the 21<sup>st</sup> century. Chemical vapor deposition (CVD), a solvent-free method, allows versatility in the growth of thin films of 3- and 2D organic–inorganic halide perovskites. Using CVD grown methylammonium lead iodide (MAPbI<sub>3</sub>) films as a prototype, the impact of electron beam dosage under cryogenic conditions is evaluated. With 5 kV accelerating voltage, the dosage is varied between 50 and 50000 µC cm<sup>−2</sup>. An optimum dosage of 35 000 µC cm<sup>−2</sup> results in a significant blue shift and enhancement of the photoluminescence peak. Concomitantly, a strong increase in the photocurrent is observed. A similar electron beam treatment on chlorine incorporated MAPbI<sub>3</sub>, where chlorine is known to passivate defects, shows a blue shift in the photoluminescence without improving the photocurrent properties. Low electron beam dosage under cryogenic conditions is found to damage CVD grown 2D phenylethlyammoinum lead iodide films. Monte Carlo simulations reveal differences in electron beam interaction with 3- and 2D halide perovskite films.\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202406815\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406815","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

卤化物包晶被誉为 21 世纪的半导体。化学气相沉积法(CVD)是一种无溶剂方法,可以多用途地生长三维和二维有机无机卤化物包晶石薄膜。以 CVD 生长的碘化甲铵铅 (MAPbI3) 薄膜为原型,对低温条件下电子束剂量的影响进行了评估。在 5 kV 加速电压下,电子束剂量在 50 到 50000 µC cm-2 之间变化。最佳剂量为 35 000 µC cm-2 时,光致发光峰出现显著的蓝移和增强。与此同时,还观察到光电流的大幅增加。在氯掺杂的 MAPbI3 上进行类似的电子束处理(已知氯可以钝化缺陷)后,光致发光发生了蓝移,但光电流特性没有得到改善。在低温条件下,低电子束剂量会损坏 CVD 生长的二维苯基乙二胺碘化铅薄膜。蒙特卡洛模拟揭示了电子束与三维和二维卤化物包晶薄膜相互作用的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stabilizing Metal Halide Perovskite Films via Chemical Vapor Deposition and Cryogenic Electron Beam Patterning

Stabilizing Metal Halide Perovskite Films via Chemical Vapor Deposition and Cryogenic Electron Beam Patterning
Halide perovskites are hailed as semiconductors of the 21st century. Chemical vapor deposition (CVD), a solvent-free method, allows versatility in the growth of thin films of 3- and 2D organic–inorganic halide perovskites. Using CVD grown methylammonium lead iodide (MAPbI3) films as a prototype, the impact of electron beam dosage under cryogenic conditions is evaluated. With 5 kV accelerating voltage, the dosage is varied between 50 and 50000 µC cm−2. An optimum dosage of 35 000 µC cm−2 results in a significant blue shift and enhancement of the photoluminescence peak. Concomitantly, a strong increase in the photocurrent is observed. A similar electron beam treatment on chlorine incorporated MAPbI3, where chlorine is known to passivate defects, shows a blue shift in the photoluminescence without improving the photocurrent properties. Low electron beam dosage under cryogenic conditions is found to damage CVD grown 2D phenylethlyammoinum lead iodide films. Monte Carlo simulations reveal differences in electron beam interaction with 3- and 2D halide perovskite films.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信