{"title":"硅异质结上胶体量子点的热释光效应用于高探测率红外光探测器","authors":"Vishwa Bhatt, Manjeet Kumar, Ha-Neul Kim, Doheon Yoo, Ju-Hyung Yun, Min-Jae Choi","doi":"10.1016/j.nanoen.2024.110465","DOIUrl":null,"url":null,"abstract":"Solution-processed colloidal quantum dots (CQDs) have attracted significant interest for infrared photodetection, particularly due to their easy integration with silicon-based electronics. Among these, silver sulfide (Ag<sub>2</sub>S) CQDs stand out as non-toxic infrared semiconductors. However, their application in photodetectors has traditionally shown lower detectivity compared to devices based on lead sulfide and mercury telluride CQDs. Here we demonstrate report Ag<sub>2</sub>S CQD/silicon p-n heterojunction photodetectors that exhibit substantially enhanced detectivity. This improvement was facilitated by the pyro-phototronic effect (PPE) in Ag<sub>2</sub>S CQDs, which significantly increases the photocurrent. Consequently, the detectivity of the CQD/silicon photodetector was improved by a factor of 17, reaching 4.1×10<sup>10</sup> Jones at 980<!-- --> <!-- -->nm. These findings pave the way for new opportunities in utilizing CQDs for pyro-phototronic driven, solution-processed optoelectronic devices.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"5 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyro-phototronic Effect in Colloidal Quantum Dots on Silicon Heterojunction for High-detectivity Infrared Photodetectors\",\"authors\":\"Vishwa Bhatt, Manjeet Kumar, Ha-Neul Kim, Doheon Yoo, Ju-Hyung Yun, Min-Jae Choi\",\"doi\":\"10.1016/j.nanoen.2024.110465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solution-processed colloidal quantum dots (CQDs) have attracted significant interest for infrared photodetection, particularly due to their easy integration with silicon-based electronics. Among these, silver sulfide (Ag<sub>2</sub>S) CQDs stand out as non-toxic infrared semiconductors. However, their application in photodetectors has traditionally shown lower detectivity compared to devices based on lead sulfide and mercury telluride CQDs. Here we demonstrate report Ag<sub>2</sub>S CQD/silicon p-n heterojunction photodetectors that exhibit substantially enhanced detectivity. This improvement was facilitated by the pyro-phototronic effect (PPE) in Ag<sub>2</sub>S CQDs, which significantly increases the photocurrent. Consequently, the detectivity of the CQD/silicon photodetector was improved by a factor of 17, reaching 4.1×10<sup>10</sup> Jones at 980<!-- --> <!-- -->nm. These findings pave the way for new opportunities in utilizing CQDs for pyro-phototronic driven, solution-processed optoelectronic devices.\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nanoen.2024.110465\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110465","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Pyro-phototronic Effect in Colloidal Quantum Dots on Silicon Heterojunction for High-detectivity Infrared Photodetectors
Solution-processed colloidal quantum dots (CQDs) have attracted significant interest for infrared photodetection, particularly due to their easy integration with silicon-based electronics. Among these, silver sulfide (Ag2S) CQDs stand out as non-toxic infrared semiconductors. However, their application in photodetectors has traditionally shown lower detectivity compared to devices based on lead sulfide and mercury telluride CQDs. Here we demonstrate report Ag2S CQD/silicon p-n heterojunction photodetectors that exhibit substantially enhanced detectivity. This improvement was facilitated by the pyro-phototronic effect (PPE) in Ag2S CQDs, which significantly increases the photocurrent. Consequently, the detectivity of the CQD/silicon photodetector was improved by a factor of 17, reaching 4.1×1010 Jones at 980 nm. These findings pave the way for new opportunities in utilizing CQDs for pyro-phototronic driven, solution-processed optoelectronic devices.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.