效率超过 13.6% 的无机 CsSnI3 Perovskite 太阳能电池

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haixuan Yu, Zhiguo Zhang, Hongliang Dong, Xiongjie Li, Zhirong Liu, Junyi Huang, Yongqing Fu, Yan Shen, Mingkui Wang
{"title":"效率超过 13.6% 的无机 CsSnI3 Perovskite 太阳能电池","authors":"Haixuan Yu, Zhiguo Zhang, Hongliang Dong, Xiongjie Li, Zhirong Liu, Junyi Huang, Yongqing Fu, Yan Shen, Mingkui Wang","doi":"10.1021/acsenergylett.4c02742","DOIUrl":null,"url":null,"abstract":"Due to the high Lewis acidity of Sn<sup>2+</sup>, it is a major challenge to prepare high-quality CsSnI<sub>3</sub> films. To solve this critical problem, here we propose a pseudohalide anion alloying process to regulate the crystallization of inorganic CsSnI<sub>3</sub> perovskite and achieve large grain sizes in the micron range. The introduction of a pseudohalide anion changes the phase transition pathways through the formation of intermediates, thereby slowing the rate of CsSnI<sub>3</sub> crystallization. The substitutional alloying of HCOO<sup>–</sup> in the CsSnI<sub>3</sub> crystal lattice further improves the oxidation resistance of Sn<sup>2+</sup> due to the strong bonding between the HCOO<sup>–</sup> anions and Sn<sup>2+</sup> cations. The fabricated CsSnI<sub>3</sub>-based planar perovskite solar cell with an inverted configuration and active area of 4.05 mm<sup>2</sup> exhibits certified power conversion efficiency of 13.68% at AM 1.5 solar irradiation (100 mW cm<sup>–2</sup>), which is among the best reported for CsSnI<sub>3</sub>-based inorganic perovskite cells.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"24 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inorganic CsSnI3 Perovskite Solar Cells with an Efficiency above 13.6%\",\"authors\":\"Haixuan Yu, Zhiguo Zhang, Hongliang Dong, Xiongjie Li, Zhirong Liu, Junyi Huang, Yongqing Fu, Yan Shen, Mingkui Wang\",\"doi\":\"10.1021/acsenergylett.4c02742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the high Lewis acidity of Sn<sup>2+</sup>, it is a major challenge to prepare high-quality CsSnI<sub>3</sub> films. To solve this critical problem, here we propose a pseudohalide anion alloying process to regulate the crystallization of inorganic CsSnI<sub>3</sub> perovskite and achieve large grain sizes in the micron range. The introduction of a pseudohalide anion changes the phase transition pathways through the formation of intermediates, thereby slowing the rate of CsSnI<sub>3</sub> crystallization. The substitutional alloying of HCOO<sup>–</sup> in the CsSnI<sub>3</sub> crystal lattice further improves the oxidation resistance of Sn<sup>2+</sup> due to the strong bonding between the HCOO<sup>–</sup> anions and Sn<sup>2+</sup> cations. The fabricated CsSnI<sub>3</sub>-based planar perovskite solar cell with an inverted configuration and active area of 4.05 mm<sup>2</sup> exhibits certified power conversion efficiency of 13.68% at AM 1.5 solar irradiation (100 mW cm<sup>–2</sup>), which is among the best reported for CsSnI<sub>3</sub>-based inorganic perovskite cells.\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c02742\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02742","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于 Sn2+ 的路易斯酸度较高,制备高质量的 CsSnI3 薄膜是一项重大挑战。为了解决这一关键问题,我们在此提出了一种假卤化物阴离子合金化工艺,以调节无机 CsSnI3 包晶的结晶,实现微米级的大晶粒尺寸。假卤化物阴离子的引入通过形成中间产物改变了相变途径,从而减缓了 CsSnI3 的结晶速度。由于 HCOO- 阴离子和 Sn2+ 阳离子之间的强键作用,CsSnI3 晶格中的 HCOO- 替代合金进一步提高了 Sn2+ 的抗氧化性。所制备的基于 CsSnI3 的平面透辉石太阳能电池采用倒置结构,有源面积为 4.05 mm2,在 AM 1.5 太阳辐照(100 mW cm-2)条件下的功率转换效率为 13.68%,是所报道的基于 CsSnI3 的无机透辉石电池中最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inorganic CsSnI3 Perovskite Solar Cells with an Efficiency above 13.6%

Inorganic CsSnI3 Perovskite Solar Cells with an Efficiency above 13.6%
Due to the high Lewis acidity of Sn2+, it is a major challenge to prepare high-quality CsSnI3 films. To solve this critical problem, here we propose a pseudohalide anion alloying process to regulate the crystallization of inorganic CsSnI3 perovskite and achieve large grain sizes in the micron range. The introduction of a pseudohalide anion changes the phase transition pathways through the formation of intermediates, thereby slowing the rate of CsSnI3 crystallization. The substitutional alloying of HCOO in the CsSnI3 crystal lattice further improves the oxidation resistance of Sn2+ due to the strong bonding between the HCOO anions and Sn2+ cations. The fabricated CsSnI3-based planar perovskite solar cell with an inverted configuration and active area of 4.05 mm2 exhibits certified power conversion efficiency of 13.68% at AM 1.5 solar irradiation (100 mW cm–2), which is among the best reported for CsSnI3-based inorganic perovskite cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信