Yao Xu, Jiangkai Yu, Songtao Liu, Fei Tang, Nanxi Ma, Kai Zhang, Fei Huang
{"title":"表面电位均匀化提高了包晶体太阳能电池的性能","authors":"Yao Xu, Jiangkai Yu, Songtao Liu, Fei Tang, Nanxi Ma, Kai Zhang, Fei Huang","doi":"10.1002/aenm.202404755","DOIUrl":null,"url":null,"abstract":"The synthesis of multicomponent metal halide perovskites (MHPs) by cationic and/or halide alloying allows band gap tuning, optimizing performance and improving stability. However, these multicomponent materials often suffer from compositional, structural, and property inhomogeneities, leading to uneven carrier transport and significant non-radiative recombination losses in lead halide perovskites. While many researchers have focused on the aggregation of perovskite halide ions, the impact of the surface potential has received relatively less attention. In this study, the multifunctional ionic liquid 1-allyl-3-methylimidazole dicyanamide (AMI) is introduced into the perovskite precursor to effectively regulate the surface potential of the perovskite layer. This approach inhibits non-radiative recombination, enhances carrier injection, and improves device performance. Surface potential homogenization within the perovskite layer leads to simultaneous improvements in both the efficiency and stability of perovskite solar cells. For wide-bandgap perovskites (1.81 eV), the optimal power conversion efficiency (PCE) reaches 20.44%, with an open-circuit voltage (<i>V</i><sub>oc</sub>) of 1.339 V, a short-circuit current density (<i>J</i><sub>sc</sub>) of 17.92 mA cm<sup>−2</sup>, and a high fill factor (FF) of 85%. This strategy also proved effective for conventional bandgap perovskite solar cells (PSCs) (1.53 eV), leading to a significant increase in performance, with the PCE increasing from 23.22% to 25.41%.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Potential Homogenization Improves Perovskite Solar Cell Performance\",\"authors\":\"Yao Xu, Jiangkai Yu, Songtao Liu, Fei Tang, Nanxi Ma, Kai Zhang, Fei Huang\",\"doi\":\"10.1002/aenm.202404755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis of multicomponent metal halide perovskites (MHPs) by cationic and/or halide alloying allows band gap tuning, optimizing performance and improving stability. However, these multicomponent materials often suffer from compositional, structural, and property inhomogeneities, leading to uneven carrier transport and significant non-radiative recombination losses in lead halide perovskites. While many researchers have focused on the aggregation of perovskite halide ions, the impact of the surface potential has received relatively less attention. In this study, the multifunctional ionic liquid 1-allyl-3-methylimidazole dicyanamide (AMI) is introduced into the perovskite precursor to effectively regulate the surface potential of the perovskite layer. This approach inhibits non-radiative recombination, enhances carrier injection, and improves device performance. Surface potential homogenization within the perovskite layer leads to simultaneous improvements in both the efficiency and stability of perovskite solar cells. For wide-bandgap perovskites (1.81 eV), the optimal power conversion efficiency (PCE) reaches 20.44%, with an open-circuit voltage (<i>V</i><sub>oc</sub>) of 1.339 V, a short-circuit current density (<i>J</i><sub>sc</sub>) of 17.92 mA cm<sup>−2</sup>, and a high fill factor (FF) of 85%. This strategy also proved effective for conventional bandgap perovskite solar cells (PSCs) (1.53 eV), leading to a significant increase in performance, with the PCE increasing from 23.22% to 25.41%.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202404755\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404755","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Surface Potential Homogenization Improves Perovskite Solar Cell Performance
The synthesis of multicomponent metal halide perovskites (MHPs) by cationic and/or halide alloying allows band gap tuning, optimizing performance and improving stability. However, these multicomponent materials often suffer from compositional, structural, and property inhomogeneities, leading to uneven carrier transport and significant non-radiative recombination losses in lead halide perovskites. While many researchers have focused on the aggregation of perovskite halide ions, the impact of the surface potential has received relatively less attention. In this study, the multifunctional ionic liquid 1-allyl-3-methylimidazole dicyanamide (AMI) is introduced into the perovskite precursor to effectively regulate the surface potential of the perovskite layer. This approach inhibits non-radiative recombination, enhances carrier injection, and improves device performance. Surface potential homogenization within the perovskite layer leads to simultaneous improvements in both the efficiency and stability of perovskite solar cells. For wide-bandgap perovskites (1.81 eV), the optimal power conversion efficiency (PCE) reaches 20.44%, with an open-circuit voltage (Voc) of 1.339 V, a short-circuit current density (Jsc) of 17.92 mA cm−2, and a high fill factor (FF) of 85%. This strategy also proved effective for conventional bandgap perovskite solar cells (PSCs) (1.53 eV), leading to a significant increase in performance, with the PCE increasing from 23.22% to 25.41%.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.