FuXi-En4DVar:基于机器学习天气预报模型的同化系统,确保物理约束条件

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Yonghui Li, Wei Han, Hao Li, Wansuo Duan, Lei Chen, Xiaohui Zhong, Jincheng Wang, Yongzhu Liu, Xiuyu Sun
{"title":"FuXi-En4DVar:基于机器学习天气预报模型的同化系统,确保物理约束条件","authors":"Yonghui Li,&nbsp;Wei Han,&nbsp;Hao Li,&nbsp;Wansuo Duan,&nbsp;Lei Chen,&nbsp;Xiaohui Zhong,&nbsp;Jincheng Wang,&nbsp;Yongzhu Liu,&nbsp;Xiuyu Sun","doi":"10.1029/2024GL111136","DOIUrl":null,"url":null,"abstract":"<p>Recent machine learning (ML)-based weather forecasting models have improved the accuracy and efficiency of forecasts while minimizing computational resources, yet still depend on traditional data assimilation (DA) systems to generate analysis fields. Four dimensional variational data assimilation (4DVar) enhances model states, relying on the prediction model to propagate observation to the initial field. Consequently, the initial fields from traditional DA are not optimal for ML-based models, necessitating a customized DA system. This paper introduces an ensemble 4DVar system integrated with the FuXi model (FuXi-En4DVar), which can independently generate accurate analysis fields. It utilizes automatic differentiation to compute gradients, and demonstrates the equivalence of these gradients with those derived from adjoint models. Experimental results indicate that this system preserves the physical balance of the analysis field and exhibits flow-dependent characteristics. These features enhance the propagation and assimilation of observation into the initial analysis field, thereby improving the accuracy of the analysis fields.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 22","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111136","citationCount":"0","resultStr":"{\"title\":\"FuXi-En4DVar: An Assimilation System Based on Machine Learning Weather Forecasting Model Ensuring Physical Constraints\",\"authors\":\"Yonghui Li,&nbsp;Wei Han,&nbsp;Hao Li,&nbsp;Wansuo Duan,&nbsp;Lei Chen,&nbsp;Xiaohui Zhong,&nbsp;Jincheng Wang,&nbsp;Yongzhu Liu,&nbsp;Xiuyu Sun\",\"doi\":\"10.1029/2024GL111136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent machine learning (ML)-based weather forecasting models have improved the accuracy and efficiency of forecasts while minimizing computational resources, yet still depend on traditional data assimilation (DA) systems to generate analysis fields. Four dimensional variational data assimilation (4DVar) enhances model states, relying on the prediction model to propagate observation to the initial field. Consequently, the initial fields from traditional DA are not optimal for ML-based models, necessitating a customized DA system. This paper introduces an ensemble 4DVar system integrated with the FuXi model (FuXi-En4DVar), which can independently generate accurate analysis fields. It utilizes automatic differentiation to compute gradients, and demonstrates the equivalence of these gradients with those derived from adjoint models. Experimental results indicate that this system preserves the physical balance of the analysis field and exhibits flow-dependent characteristics. These features enhance the propagation and assimilation of observation into the initial analysis field, thereby improving the accuracy of the analysis fields.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 22\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111136\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111136\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111136","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近,基于机器学习(ML)的天气预报模型提高了预报的准确性和效率,同时最大限度地减少了计算资源,但仍依赖于传统的数据同化(DA)系统来生成分析场。四维变分数据同化(4DVar)增强了模型状态,依靠预测模型将观测结果传播到初始场。因此,传统数据同化的初始场对于基于 ML 的模型来说并不是最佳的,因此需要定制数据同化系统。本文介绍了一种与 FuXi 模型集成的集合 4DVar 系统(FuXi-En4DVar),它可以独立生成精确的分析场。它利用自动微分来计算梯度,并证明了这些梯度与从邻接模型得出的梯度的等效性。实验结果表明,该系统保持了分析场的物理平衡,并表现出与流动相关的特性。这些特点加强了观测数据在初始分析场中的传播和同化,从而提高了分析场的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

FuXi-En4DVar: An Assimilation System Based on Machine Learning Weather Forecasting Model Ensuring Physical Constraints

FuXi-En4DVar: An Assimilation System Based on Machine Learning Weather Forecasting Model Ensuring Physical Constraints

Recent machine learning (ML)-based weather forecasting models have improved the accuracy and efficiency of forecasts while minimizing computational resources, yet still depend on traditional data assimilation (DA) systems to generate analysis fields. Four dimensional variational data assimilation (4DVar) enhances model states, relying on the prediction model to propagate observation to the initial field. Consequently, the initial fields from traditional DA are not optimal for ML-based models, necessitating a customized DA system. This paper introduces an ensemble 4DVar system integrated with the FuXi model (FuXi-En4DVar), which can independently generate accurate analysis fields. It utilizes automatic differentiation to compute gradients, and demonstrates the equivalence of these gradients with those derived from adjoint models. Experimental results indicate that this system preserves the physical balance of the analysis field and exhibits flow-dependent characteristics. These features enhance the propagation and assimilation of observation into the initial analysis field, thereby improving the accuracy of the analysis fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信