Gansu Zhang, Hongyang Li, Zhiqiang Li, Shuxian Su, Xuan Xu, Liang Dong, Wei Dai, Qinglai Wei
{"title":"使用带剪枝的动态模式分解对密集分离流化床进行进化识别","authors":"Gansu Zhang, Hongyang Li, Zhiqiang Li, Shuxian Su, Xuan Xu, Liang Dong, Wei Dai, Qinglai Wei","doi":"10.1016/j.cej.2024.157477","DOIUrl":null,"url":null,"abstract":"Evolutionary identification of hydrodynamics from pressure signals is crucial for advancing the precise control of dry coal separation. Dynamic Mode Decomposition (DMD) is the key method to construct the data-driven control framework. Pressure signals rather than snapshots are investigated for industrial applications, bringing challenges to the implementation of DMD. The techniques of time delay embedding and optimal amplitude are introduced to make DMD work better for pressure signals. Comprehensive parameter tests of stack dimension <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">s</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 469.5 600.2\" width=\"1.09ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-73\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">s</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">s</mi></math></script></span> and truncation order <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">r</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 451.5 600.2\" width=\"1.049ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-72\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">r</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">r</mi></math></script></span> are carried out to seek for optimal identification performance. Due to parameter sensitivity, the qualification verification by sliding windows is performed to determine the robustness of parameter pairs. Spatiotemporal coherent structures are extracted to guide the regulation of separation process. In order to avoid the inefficiency of control, a heuristic sparsity promoting method using pruning is proposed to obtain a reduced order model. The original modes more than 100 can be reduced to approximately 35 primary modes. Furthermore, the Prune dominant frequency is defined, which can perceive the subtle fluctuations of temporal evolution than FFT and DMD for the long-term time. Present study provides the insight of hydrodynamics of dense gas-solid fluidized bed, establishing the foundation for future control studies of dry coal separation.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"25 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary identification in dense separation fluidized beds using dynamic mode decomposition with pruning\",\"authors\":\"Gansu Zhang, Hongyang Li, Zhiqiang Li, Shuxian Su, Xuan Xu, Liang Dong, Wei Dai, Qinglai Wei\",\"doi\":\"10.1016/j.cej.2024.157477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary identification of hydrodynamics from pressure signals is crucial for advancing the precise control of dry coal separation. Dynamic Mode Decomposition (DMD) is the key method to construct the data-driven control framework. Pressure signals rather than snapshots are investigated for industrial applications, bringing challenges to the implementation of DMD. The techniques of time delay embedding and optimal amplitude are introduced to make DMD work better for pressure signals. Comprehensive parameter tests of stack dimension <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\">s</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.394ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -498.8 469.5 600.2\\\" width=\\\"1.09ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-73\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\">s</mi></math></span></span><script type=\\\"math/mml\\\"><math><mi is=\\\"true\\\">s</mi></math></script></span> and truncation order <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\">r</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.394ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -498.8 451.5 600.2\\\" width=\\\"1.049ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-72\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\">r</mi></math></span></span><script type=\\\"math/mml\\\"><math><mi is=\\\"true\\\">r</mi></math></script></span> are carried out to seek for optimal identification performance. Due to parameter sensitivity, the qualification verification by sliding windows is performed to determine the robustness of parameter pairs. Spatiotemporal coherent structures are extracted to guide the regulation of separation process. In order to avoid the inefficiency of control, a heuristic sparsity promoting method using pruning is proposed to obtain a reduced order model. The original modes more than 100 can be reduced to approximately 35 primary modes. Furthermore, the Prune dominant frequency is defined, which can perceive the subtle fluctuations of temporal evolution than FFT and DMD for the long-term time. Present study provides the insight of hydrodynamics of dense gas-solid fluidized bed, establishing the foundation for future control studies of dry coal separation.\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157477\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157477","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evolutionary identification in dense separation fluidized beds using dynamic mode decomposition with pruning
Evolutionary identification of hydrodynamics from pressure signals is crucial for advancing the precise control of dry coal separation. Dynamic Mode Decomposition (DMD) is the key method to construct the data-driven control framework. Pressure signals rather than snapshots are investigated for industrial applications, bringing challenges to the implementation of DMD. The techniques of time delay embedding and optimal amplitude are introduced to make DMD work better for pressure signals. Comprehensive parameter tests of stack dimension and truncation order are carried out to seek for optimal identification performance. Due to parameter sensitivity, the qualification verification by sliding windows is performed to determine the robustness of parameter pairs. Spatiotemporal coherent structures are extracted to guide the regulation of separation process. In order to avoid the inefficiency of control, a heuristic sparsity promoting method using pruning is proposed to obtain a reduced order model. The original modes more than 100 can be reduced to approximately 35 primary modes. Furthermore, the Prune dominant frequency is defined, which can perceive the subtle fluctuations of temporal evolution than FFT and DMD for the long-term time. Present study provides the insight of hydrodynamics of dense gas-solid fluidized bed, establishing the foundation for future control studies of dry coal separation.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research