Su Wang, Jiaxiang Zhang, Kaixuan Ma, Wanyao Zhang, Yan Gao, Pengjie Yu, Shuangfei Zhao, Yirong Feng, Jiming Yang, Ruiyan Sun, Yuguang Li, Ning Zhu, Wei He, Kai Guo
{"title":"设计和优化用于超声辅助合成高性能 Fe3O4 纳米粒子的新型涡流微反应器","authors":"Su Wang, Jiaxiang Zhang, Kaixuan Ma, Wanyao Zhang, Yan Gao, Pengjie Yu, Shuangfei Zhao, Yirong Feng, Jiming Yang, Ruiyan Sun, Yuguang Li, Ning Zhu, Wei He, Kai Guo","doi":"10.1016/j.cej.2024.157672","DOIUrl":null,"url":null,"abstract":"Microreactors excel in nanomaterial preparation but are limited by microchannel clogging for sustained long-term use. This study reports an innovative design of an ultrasound-assisted vortex microreactor for the continuous synthesis of high-performance nano-Fe<sub>3</sub>O<sub>4</sub> particles. Combining visual experiments with computational fluid dynamics (CFD) simulations, four vortex microreactors were designed, and their mixing and heat transfer processes were investigated. Through comprehensive analysis, microreactor-4 was identified as the optimal configuration, with an optimal flow rate of 1 mL/min and a temperature of 70 °C. By coupling the microreactor with ultrasound, a continuous preparation method for nano-Fe3O4 was realized. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) analyses revealed that the synthesized nano-Fe3O4 particles exhibit a spherical crystal morphology with an average particle size of approximately 6.68 nm, which is 24.4 % and 20.5 % smaller than those prepared by the beaker method and by a stirred-field coupled microreactor reported in the literature, respectively. Vibrating sample magnetometry (VSM) measurements indicated a saturation magnetization of 45.75 emu/g for the nano-Fe3O4, representing a 32.3 % increase over the beaker method and demonstrating excellent superparamagnetic properties. This study provides a novel and effective pathway for the continuous preparation of nanoscale magnetic materials.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"108 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of novel vortex microreactors for ultrasound-assisted synthesis of high-performance Fe3O4 nanoparticles\",\"authors\":\"Su Wang, Jiaxiang Zhang, Kaixuan Ma, Wanyao Zhang, Yan Gao, Pengjie Yu, Shuangfei Zhao, Yirong Feng, Jiming Yang, Ruiyan Sun, Yuguang Li, Ning Zhu, Wei He, Kai Guo\",\"doi\":\"10.1016/j.cej.2024.157672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microreactors excel in nanomaterial preparation but are limited by microchannel clogging for sustained long-term use. This study reports an innovative design of an ultrasound-assisted vortex microreactor for the continuous synthesis of high-performance nano-Fe<sub>3</sub>O<sub>4</sub> particles. Combining visual experiments with computational fluid dynamics (CFD) simulations, four vortex microreactors were designed, and their mixing and heat transfer processes were investigated. Through comprehensive analysis, microreactor-4 was identified as the optimal configuration, with an optimal flow rate of 1 mL/min and a temperature of 70 °C. By coupling the microreactor with ultrasound, a continuous preparation method for nano-Fe3O4 was realized. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) analyses revealed that the synthesized nano-Fe3O4 particles exhibit a spherical crystal morphology with an average particle size of approximately 6.68 nm, which is 24.4 % and 20.5 % smaller than those prepared by the beaker method and by a stirred-field coupled microreactor reported in the literature, respectively. Vibrating sample magnetometry (VSM) measurements indicated a saturation magnetization of 45.75 emu/g for the nano-Fe3O4, representing a 32.3 % increase over the beaker method and demonstrating excellent superparamagnetic properties. This study provides a novel and effective pathway for the continuous preparation of nanoscale magnetic materials.\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157672\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157672","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Design and optimization of novel vortex microreactors for ultrasound-assisted synthesis of high-performance Fe3O4 nanoparticles
Microreactors excel in nanomaterial preparation but are limited by microchannel clogging for sustained long-term use. This study reports an innovative design of an ultrasound-assisted vortex microreactor for the continuous synthesis of high-performance nano-Fe3O4 particles. Combining visual experiments with computational fluid dynamics (CFD) simulations, four vortex microreactors were designed, and their mixing and heat transfer processes were investigated. Through comprehensive analysis, microreactor-4 was identified as the optimal configuration, with an optimal flow rate of 1 mL/min and a temperature of 70 °C. By coupling the microreactor with ultrasound, a continuous preparation method for nano-Fe3O4 was realized. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) analyses revealed that the synthesized nano-Fe3O4 particles exhibit a spherical crystal morphology with an average particle size of approximately 6.68 nm, which is 24.4 % and 20.5 % smaller than those prepared by the beaker method and by a stirred-field coupled microreactor reported in the literature, respectively. Vibrating sample magnetometry (VSM) measurements indicated a saturation magnetization of 45.75 emu/g for the nano-Fe3O4, representing a 32.3 % increase over the beaker method and demonstrating excellent superparamagnetic properties. This study provides a novel and effective pathway for the continuous preparation of nanoscale magnetic materials.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research