横向量子超流体

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER
Anatoly Kuklov, Lode Pollet, Nikolay Prokof’ev, Boris Svistunov
{"title":"横向量子超流体","authors":"Anatoly Kuklov, Lode Pollet, Nikolay Prokof’ev, Boris Svistunov","doi":"10.1146/annurev-conmatphys-042924-103908","DOIUrl":null,"url":null,"abstract":"Even when ideal solids are insulating, their states with crystallographic defects may have superfluid properties. It became clear recently that edge dislocations in <jats:sup>4</jats:sup>He featuring a combination of microscopic quantum roughness and superfluidity of their cores may represent a new paradigmatic class of quasi-one-dimensional superfluids. The new state of matter, termed transverse quantum fluid (TQF), is found in a variety of physical setups. The key ingredient defining the class of TQF systems is infinite compressibility, which is responsible for all other unusual properties such as the quadratic spectrum of normal modes (or even the absence of sharp quasiparticles), irrelevance of the Landau criterion, off-diagonal long-range order at <jats:italic>T</jats:italic> = 0, and the exponential dependence of the phase slip probability on the inverse flow velocity. From a conceptual point of view, the TQF state is a striking demonstration of the conditional character of many dogmas associated with superfluidity, including the necessity of elementary excitations, in general, and the ones obeying Landau criterion in particular.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"29 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transverse Quantum Superfluids\",\"authors\":\"Anatoly Kuklov, Lode Pollet, Nikolay Prokof’ev, Boris Svistunov\",\"doi\":\"10.1146/annurev-conmatphys-042924-103908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even when ideal solids are insulating, their states with crystallographic defects may have superfluid properties. It became clear recently that edge dislocations in <jats:sup>4</jats:sup>He featuring a combination of microscopic quantum roughness and superfluidity of their cores may represent a new paradigmatic class of quasi-one-dimensional superfluids. The new state of matter, termed transverse quantum fluid (TQF), is found in a variety of physical setups. The key ingredient defining the class of TQF systems is infinite compressibility, which is responsible for all other unusual properties such as the quadratic spectrum of normal modes (or even the absence of sharp quasiparticles), irrelevance of the Landau criterion, off-diagonal long-range order at <jats:italic>T</jats:italic> = 0, and the exponential dependence of the phase slip probability on the inverse flow velocity. From a conceptual point of view, the TQF state is a striking demonstration of the conditional character of many dogmas associated with superfluidity, including the necessity of elementary excitations, in general, and the ones obeying Landau criterion in particular.\",\"PeriodicalId\":7925,\"journal\":{\"name\":\"Annual Review of Condensed Matter Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-conmatphys-042924-103908\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-042924-103908","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

即使理想固体是绝缘的,其晶体学缺陷状态也可能具有超流体特性。最近很明显的一点是,4He 中的边缘位错具有微观量子粗糙度和核心超流体的双重特征,可能代表了一类新的准一维超流体范例。这种新的物质状态被称为横向量子流体(TQF),可在多种物理设置中发现。定义这一类 TQF 系统的关键因素是无限可压缩性,这也是所有其他不寻常特性的原因,如正常模式的二次谱(甚至没有尖锐的准粒子)、朗道准则的无关性、T = 0 时的非对角长程阶,以及相滑移概率对反向流动速度的指数依赖性。从概念的角度来看,TQF态惊人地证明了许多与超流体相关的教条的条件性,包括基本激元的必要性,特别是遵守朗道准则的激元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transverse Quantum Superfluids
Even when ideal solids are insulating, their states with crystallographic defects may have superfluid properties. It became clear recently that edge dislocations in 4He featuring a combination of microscopic quantum roughness and superfluidity of their cores may represent a new paradigmatic class of quasi-one-dimensional superfluids. The new state of matter, termed transverse quantum fluid (TQF), is found in a variety of physical setups. The key ingredient defining the class of TQF systems is infinite compressibility, which is responsible for all other unusual properties such as the quadratic spectrum of normal modes (or even the absence of sharp quasiparticles), irrelevance of the Landau criterion, off-diagonal long-range order at T = 0, and the exponential dependence of the phase slip probability on the inverse flow velocity. From a conceptual point of view, the TQF state is a striking demonstration of the conditional character of many dogmas associated with superfluidity, including the necessity of elementary excitations, in general, and the ones obeying Landau criterion in particular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信