Anatoly Kuklov, Lode Pollet, Nikolay Prokof’ev, Boris Svistunov
{"title":"横向量子超流体","authors":"Anatoly Kuklov, Lode Pollet, Nikolay Prokof’ev, Boris Svistunov","doi":"10.1146/annurev-conmatphys-042924-103908","DOIUrl":null,"url":null,"abstract":"Even when ideal solids are insulating, their states with crystallographic defects may have superfluid properties. It became clear recently that edge dislocations in <jats:sup>4</jats:sup>He featuring a combination of microscopic quantum roughness and superfluidity of their cores may represent a new paradigmatic class of quasi-one-dimensional superfluids. The new state of matter, termed transverse quantum fluid (TQF), is found in a variety of physical setups. The key ingredient defining the class of TQF systems is infinite compressibility, which is responsible for all other unusual properties such as the quadratic spectrum of normal modes (or even the absence of sharp quasiparticles), irrelevance of the Landau criterion, off-diagonal long-range order at <jats:italic>T</jats:italic> = 0, and the exponential dependence of the phase slip probability on the inverse flow velocity. From a conceptual point of view, the TQF state is a striking demonstration of the conditional character of many dogmas associated with superfluidity, including the necessity of elementary excitations, in general, and the ones obeying Landau criterion in particular.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"29 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transverse Quantum Superfluids\",\"authors\":\"Anatoly Kuklov, Lode Pollet, Nikolay Prokof’ev, Boris Svistunov\",\"doi\":\"10.1146/annurev-conmatphys-042924-103908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even when ideal solids are insulating, their states with crystallographic defects may have superfluid properties. It became clear recently that edge dislocations in <jats:sup>4</jats:sup>He featuring a combination of microscopic quantum roughness and superfluidity of their cores may represent a new paradigmatic class of quasi-one-dimensional superfluids. The new state of matter, termed transverse quantum fluid (TQF), is found in a variety of physical setups. The key ingredient defining the class of TQF systems is infinite compressibility, which is responsible for all other unusual properties such as the quadratic spectrum of normal modes (or even the absence of sharp quasiparticles), irrelevance of the Landau criterion, off-diagonal long-range order at <jats:italic>T</jats:italic> = 0, and the exponential dependence of the phase slip probability on the inverse flow velocity. From a conceptual point of view, the TQF state is a striking demonstration of the conditional character of many dogmas associated with superfluidity, including the necessity of elementary excitations, in general, and the ones obeying Landau criterion in particular.\",\"PeriodicalId\":7925,\"journal\":{\"name\":\"Annual Review of Condensed Matter Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-conmatphys-042924-103908\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-042924-103908","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Even when ideal solids are insulating, their states with crystallographic defects may have superfluid properties. It became clear recently that edge dislocations in 4He featuring a combination of microscopic quantum roughness and superfluidity of their cores may represent a new paradigmatic class of quasi-one-dimensional superfluids. The new state of matter, termed transverse quantum fluid (TQF), is found in a variety of physical setups. The key ingredient defining the class of TQF systems is infinite compressibility, which is responsible for all other unusual properties such as the quadratic spectrum of normal modes (or even the absence of sharp quasiparticles), irrelevance of the Landau criterion, off-diagonal long-range order at T = 0, and the exponential dependence of the phase slip probability on the inverse flow velocity. From a conceptual point of view, the TQF state is a striking demonstration of the conditional character of many dogmas associated with superfluidity, including the necessity of elementary excitations, in general, and the ones obeying Landau criterion in particular.
期刊介绍:
Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.