{"title":"利用工程化 MCF 进行各种生物商品的工业化生产:微生物稳健性工程战略","authors":"Ju-Hyeong Jung, Vinoth Kumar Ponnusamy, Gopalakrishnan Kumar, Bartłomiej Igliński, Vinod Kumar, Gergorz Piechota","doi":"10.1016/j.cej.2024.157679","DOIUrl":null,"url":null,"abstract":"The utilization of renewable, non–edible biomass for synthesis of valuable bio–products, such as bio–fuels, and bio–polymeric materials, in an environmentally sustainable manner is crucial for addressing the urgent environmental challenges caused by our substantial dependence on fossil fuel resources. In this context, engineered microbial cell factories (MCFs), which are modified microorganisms, have gained attention and mainly involve biosynthetically optimized pathways for the production of desired bio–commodities using renewable carbon sources. Biosynthetic routes for the production of such bio–commodities can be categorized into three groups based on the chosen microbial host for genetic modification: native, non–native, and artificially produced pathways. Engineered MCFs are increasingly essential in the pharmaceutical, food, and bio–chemical industries and are being developed to address the growing world population and socioeconomic crisis. Mainly, microorganisms have been utilized in the manufacture of a range of bio–products, such as amino acids, carboxylic acids, carotenoids, enzymes, vitamins, plant natural products, biogas, and other biofuels. Furthermore, the implementation of metabolic engineering techniques enhances the speed, concentration, and efficiency of commercially important substances by modifying the carbon–energy balance and eliminating an undesired ATP sink, metabolism, physiology, and stress response. Industrial biotechnology is experiencing rapid growth due to engineered MCFs for production of several bio–commodities. This review summarizes the design of MFCs, selection of microbial strains, metabolic pathways, engineered MCFs for industrial–scale applications, strategies for engineering microbial robustness, commercial restrictions, and their future prospects.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"34 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial–scale production of various bio–commodities by engineered MCFs: Strategies of engineering in microbial robustness\",\"authors\":\"Ju-Hyeong Jung, Vinoth Kumar Ponnusamy, Gopalakrishnan Kumar, Bartłomiej Igliński, Vinod Kumar, Gergorz Piechota\",\"doi\":\"10.1016/j.cej.2024.157679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of renewable, non–edible biomass for synthesis of valuable bio–products, such as bio–fuels, and bio–polymeric materials, in an environmentally sustainable manner is crucial for addressing the urgent environmental challenges caused by our substantial dependence on fossil fuel resources. In this context, engineered microbial cell factories (MCFs), which are modified microorganisms, have gained attention and mainly involve biosynthetically optimized pathways for the production of desired bio–commodities using renewable carbon sources. Biosynthetic routes for the production of such bio–commodities can be categorized into three groups based on the chosen microbial host for genetic modification: native, non–native, and artificially produced pathways. Engineered MCFs are increasingly essential in the pharmaceutical, food, and bio–chemical industries and are being developed to address the growing world population and socioeconomic crisis. Mainly, microorganisms have been utilized in the manufacture of a range of bio–products, such as amino acids, carboxylic acids, carotenoids, enzymes, vitamins, plant natural products, biogas, and other biofuels. Furthermore, the implementation of metabolic engineering techniques enhances the speed, concentration, and efficiency of commercially important substances by modifying the carbon–energy balance and eliminating an undesired ATP sink, metabolism, physiology, and stress response. Industrial biotechnology is experiencing rapid growth due to engineered MCFs for production of several bio–commodities. This review summarizes the design of MFCs, selection of microbial strains, metabolic pathways, engineered MCFs for industrial–scale applications, strategies for engineering microbial robustness, commercial restrictions, and their future prospects.\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157679\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157679","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
以环境可持续的方式利用可再生的非食用生物质合成有价值的生物产品,如生物燃料和生物聚合材料,对于应对因严重依赖化石燃料资源而造成的紧迫环境挑战至关重要。在此背景下,工程微生物细胞工厂(MCFs)(一种改良微生物)受到关注,主要涉及利用可再生碳源生产所需生物商品的生物合成优化途径。根据所选择的基因修饰微生物宿主,生产此类生物商品的生物合成途径可分为三类:本地途径、非本地途径和人工途径。工程微生物菌群在制药、食品和生物化学工业中越来越重要,目前正在开发这种菌群,以应对不断增长的世界人口和社会经济危机。主要是利用微生物制造一系列生物产品,如氨基酸、羧酸、类胡萝卜素、酶、维生素、植物天然产品、沼气和其他生物燃料。此外,新陈代谢工程技术通过改变碳-能量平衡和消除不需要的 ATP 吸收汇、新陈代谢、生理和应激反应,提高了商业上重要物质的生产速度、浓度和效率。工业生物技术的快速发展得益于用于生产多种生物商品的工程化 MCF。本综述概述了 MFC 的设计、微生物菌株的选择、代谢途径、用于工业规模应用的工程 MCF、微生物稳健性工程策略、商业限制及其未来前景。
Industrial–scale production of various bio–commodities by engineered MCFs: Strategies of engineering in microbial robustness
The utilization of renewable, non–edible biomass for synthesis of valuable bio–products, such as bio–fuels, and bio–polymeric materials, in an environmentally sustainable manner is crucial for addressing the urgent environmental challenges caused by our substantial dependence on fossil fuel resources. In this context, engineered microbial cell factories (MCFs), which are modified microorganisms, have gained attention and mainly involve biosynthetically optimized pathways for the production of desired bio–commodities using renewable carbon sources. Biosynthetic routes for the production of such bio–commodities can be categorized into three groups based on the chosen microbial host for genetic modification: native, non–native, and artificially produced pathways. Engineered MCFs are increasingly essential in the pharmaceutical, food, and bio–chemical industries and are being developed to address the growing world population and socioeconomic crisis. Mainly, microorganisms have been utilized in the manufacture of a range of bio–products, such as amino acids, carboxylic acids, carotenoids, enzymes, vitamins, plant natural products, biogas, and other biofuels. Furthermore, the implementation of metabolic engineering techniques enhances the speed, concentration, and efficiency of commercially important substances by modifying the carbon–energy balance and eliminating an undesired ATP sink, metabolism, physiology, and stress response. Industrial biotechnology is experiencing rapid growth due to engineered MCFs for production of several bio–commodities. This review summarizes the design of MFCs, selection of microbial strains, metabolic pathways, engineered MCFs for industrial–scale applications, strategies for engineering microbial robustness, commercial restrictions, and their future prospects.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research