Shian Liu, Alexander M. Payne, Jinan Wang, Lan Zhu, Navid Paknejad, Edward T. Eng, Wei Liu, Yinglong Miao, Richard K. Hite, Xin-Yun Huang
{"title":"单通道跨膜受体鸟苷酸环化酶的结构与激活","authors":"Shian Liu, Alexander M. Payne, Jinan Wang, Lan Zhu, Navid Paknejad, Edward T. Eng, Wei Liu, Yinglong Miao, Richard K. Hite, Xin-Yun Huang","doi":"10.1038/s41594-024-01426-z","DOIUrl":null,"url":null,"abstract":"<p>The heart, in addition to its primary role in blood circulation, functions as an endocrine organ by producing cardiac hormone natriuretic peptides. These hormones regulate blood pressure through the single-pass transmembrane receptor guanylyl cyclase A (GC-A), also known as natriuretic peptide receptor 1. The binding of the peptide hormones to the extracellular domain of the receptor activates the intracellular guanylyl cyclase domain of the receptor to produce the second messenger cyclic guanosine monophosphate. Despite their importance, the detailed architecture and domain interactions within full-length GC-A remain elusive. Here we present cryo-electron microscopy structures, functional analyses and molecular dynamics simulations of full-length human GC-A, in both the absence and the presence of atrial natriuretic peptide. The data reveal the architecture of full-length GC-A, highlighting the spatial arrangement of its various functional domains. This insight is crucial for understanding how different parts of the receptor interact and coordinate during activation. The study elucidates the molecular basis of how extracellular signals are transduced across the membrane to activate the intracellular guanylyl cyclase domain.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Architecture and activation of single-pass transmembrane receptor guanylyl cyclase\",\"authors\":\"Shian Liu, Alexander M. Payne, Jinan Wang, Lan Zhu, Navid Paknejad, Edward T. Eng, Wei Liu, Yinglong Miao, Richard K. Hite, Xin-Yun Huang\",\"doi\":\"10.1038/s41594-024-01426-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The heart, in addition to its primary role in blood circulation, functions as an endocrine organ by producing cardiac hormone natriuretic peptides. These hormones regulate blood pressure through the single-pass transmembrane receptor guanylyl cyclase A (GC-A), also known as natriuretic peptide receptor 1. The binding of the peptide hormones to the extracellular domain of the receptor activates the intracellular guanylyl cyclase domain of the receptor to produce the second messenger cyclic guanosine monophosphate. Despite their importance, the detailed architecture and domain interactions within full-length GC-A remain elusive. Here we present cryo-electron microscopy structures, functional analyses and molecular dynamics simulations of full-length human GC-A, in both the absence and the presence of atrial natriuretic peptide. The data reveal the architecture of full-length GC-A, highlighting the spatial arrangement of its various functional domains. This insight is crucial for understanding how different parts of the receptor interact and coordinate during activation. The study elucidates the molecular basis of how extracellular signals are transduced across the membrane to activate the intracellular guanylyl cyclase domain.</p>\",\"PeriodicalId\":18822,\"journal\":{\"name\":\"Nature structural & molecular biology\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature structural & molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41594-024-01426-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-024-01426-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
心脏除了在血液循环中发挥主要作用外,还通过产生心脏激素钠尿肽发挥内分泌器官的功能。这些激素通过单通道跨膜受体鸟苷酸环化酶 A (GC-A)(又称钠尿肽受体 1)调节血压。肽类激素与受体的细胞外结构域结合后,会激活受体的细胞内鸟苷酸环化酶结构域,从而产生第二信使环磷酸鸟苷。尽管GC-A非常重要,但全长GC-A的详细结构和结构域之间的相互作用仍然难以捉摸。在此,我们展示了全长人 GC-A 在没有心房利钠肽和有心房利钠肽的情况下的冷冻电子显微镜结构、功能分析和分子动力学模拟。这些数据揭示了全长 GC-A 的结构,突出了其各种功能域的空间排列。这一见解对于理解受体的不同部分在激活过程中如何相互作用和协调至关重要。这项研究阐明了细胞外信号如何跨膜传递以激活细胞内鸟苷酸环化酶结构域的分子基础。
Architecture and activation of single-pass transmembrane receptor guanylyl cyclase
The heart, in addition to its primary role in blood circulation, functions as an endocrine organ by producing cardiac hormone natriuretic peptides. These hormones regulate blood pressure through the single-pass transmembrane receptor guanylyl cyclase A (GC-A), also known as natriuretic peptide receptor 1. The binding of the peptide hormones to the extracellular domain of the receptor activates the intracellular guanylyl cyclase domain of the receptor to produce the second messenger cyclic guanosine monophosphate. Despite their importance, the detailed architecture and domain interactions within full-length GC-A remain elusive. Here we present cryo-electron microscopy structures, functional analyses and molecular dynamics simulations of full-length human GC-A, in both the absence and the presence of atrial natriuretic peptide. The data reveal the architecture of full-length GC-A, highlighting the spatial arrangement of its various functional domains. This insight is crucial for understanding how different parts of the receptor interact and coordinate during activation. The study elucidates the molecular basis of how extracellular signals are transduced across the membrane to activate the intracellular guanylyl cyclase domain.