Zhixin Xu, Xiyue Zhang, Jun Yang, Xuzixu Cui, Yanna Nuli, Jiulin Wang
{"title":"用于锂金属电池的高电压本质安全型电解质","authors":"Zhixin Xu, Xiyue Zhang, Jun Yang, Xuzixu Cui, Yanna Nuli, Jiulin Wang","doi":"10.1038/s41467-024-51958-7","DOIUrl":null,"url":null,"abstract":"<p>Current electrolytes of mixing different functional solvents inherit both merits and weaknesses of each solvent, thus cannot simultaneously meet all the requirements of high energy, long cycle life, and high safety for Li metal batteries (LMBs). Here, we design a high voltage and safe electrolyte (VSE) by integrating different functional groups into one molecule. The VSE electrolyte has a wide electrochemical stability window of ~5.6 V enabling a Li anode to achieve high Coulombic efficiency of >99.3%, Li | |LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> coin cell to maintain capacity retention of 92% after 500 cycles, and the 3.5-Ah-grade Li | |LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> pouch cell to deliver a high energy density of 531 Wh kg<sup>−1</sup> without any flame and expansion after cycled under extreme conditions. The VSE electrolyte even enables 5.0 V Li | |LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> cells to charge/discharge for 200 cycles without capacity decay. This work provides a promising direction for the rational design of high-voltage and intrinsically safe electrolytes for LMBs.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-voltage and intrinsically safe electrolytes for Li metal batteries\",\"authors\":\"Zhixin Xu, Xiyue Zhang, Jun Yang, Xuzixu Cui, Yanna Nuli, Jiulin Wang\",\"doi\":\"10.1038/s41467-024-51958-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current electrolytes of mixing different functional solvents inherit both merits and weaknesses of each solvent, thus cannot simultaneously meet all the requirements of high energy, long cycle life, and high safety for Li metal batteries (LMBs). Here, we design a high voltage and safe electrolyte (VSE) by integrating different functional groups into one molecule. The VSE electrolyte has a wide electrochemical stability window of ~5.6 V enabling a Li anode to achieve high Coulombic efficiency of >99.3%, Li | |LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> coin cell to maintain capacity retention of 92% after 500 cycles, and the 3.5-Ah-grade Li | |LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> pouch cell to deliver a high energy density of 531 Wh kg<sup>−1</sup> without any flame and expansion after cycled under extreme conditions. The VSE electrolyte even enables 5.0 V Li | |LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> cells to charge/discharge for 200 cycles without capacity decay. This work provides a promising direction for the rational design of high-voltage and intrinsically safe electrolytes for LMBs.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-51958-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51958-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
目前混合不同功能溶剂的电解质继承了每种溶剂的优点和缺点,因此无法同时满足锂金属电池(LMB)对高能量、长循环寿命和高安全性的所有要求。在此,我们通过将不同的官能团整合到一个分子中,设计出一种高电压、高安全性的电解质(VSE)。VSE 电解质具有 ~5.6 V 的宽电化学稳定性窗口,可使锂阳极达到 99.3% 的高库仑效率,使 Li | |LiNi0.8Co0.1Mn0.1O2 纽扣电池在 500 次循环后保持 92% 的容量,并使 3.5-Ah级锂离子0.8Co0.1Mn0.1O2袋装电池可提供531 Wh kg-1的高能量密度,在极端条件下循环使用也不会产生焰焰和膨胀现象。VSE 电解液甚至能使 5.0 V Li | |LiNi0.5Mn1.5O4 电池充放电 200 次而不出现容量衰减。这项工作为合理设计用于 LMB 的高电压和本质安全型电解质提供了一个很有前景的方向。
High-voltage and intrinsically safe electrolytes for Li metal batteries
Current electrolytes of mixing different functional solvents inherit both merits and weaknesses of each solvent, thus cannot simultaneously meet all the requirements of high energy, long cycle life, and high safety for Li metal batteries (LMBs). Here, we design a high voltage and safe electrolyte (VSE) by integrating different functional groups into one molecule. The VSE electrolyte has a wide electrochemical stability window of ~5.6 V enabling a Li anode to achieve high Coulombic efficiency of >99.3%, Li | |LiNi0.8Co0.1Mn0.1O2 coin cell to maintain capacity retention of 92% after 500 cycles, and the 3.5-Ah-grade Li | |LiNi0.8Co0.1Mn0.1O2 pouch cell to deliver a high energy density of 531 Wh kg−1 without any flame and expansion after cycled under extreme conditions. The VSE electrolyte even enables 5.0 V Li | |LiNi0.5Mn1.5O4 cells to charge/discharge for 200 cycles without capacity decay. This work provides a promising direction for the rational design of high-voltage and intrinsically safe electrolytes for LMBs.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.