扁平化锂离子迁移能谱的高熵策略可增强石榴石型固态电解质的导电性

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuhan Wang, Xiaojuan Wen, Zhenweican Huang, Haoyang Xu, Fengxia Fan, Xinxiang Wang, Guilei Tian, Sheng Liu, Pengfei Liu, Chuan Wang, Chenrui Zeng, Chaozhu Shu, Zhenxing Liang
{"title":"扁平化锂离子迁移能谱的高熵策略可增强石榴石型固态电解质的导电性","authors":"Shuhan Wang, Xiaojuan Wen, Zhenweican Huang, Haoyang Xu, Fengxia Fan, Xinxiang Wang, Guilei Tian, Sheng Liu, Pengfei Liu, Chuan Wang, Chenrui Zeng, Chaozhu Shu, Zhenxing Liang","doi":"10.1002/adfm.202416389","DOIUrl":null,"url":null,"abstract":"Garnet-type solid-state electrolytes with exceptional stability are believed to promote the commercialization of all solid-state lithium metal batteries. However, the extensive application of garnet-type solid-state electrolytes is greatly impeded on account of their low ionic conductivity. Herein, a high-entropy fast lithium-ion conductor Li<sub>7</sub>(La,Nd,Sr)<sub>3</sub>(Zr,Ta)<sub>2</sub>O<sub>12</sub> (LLNSZTO) with high lattice distortion is designed. It is found that the enhanced ionic conductivity of the high entropy garnet-type solid-state electrolyte LLNSZTO is achieved by introducing disorder in the lattice, which creates fast ion penetration paths with flattened energy landscapes within the pristine ordered lattice. Thus, the prepared high-entropy garnet-type solid electrolyte LLNSZTO exhibits low activation energy for Li<sup>+</sup> migration (0.34 eV) and elevated ionic conductivity (6.26 × 10<sup>−4</sup> S cm<sup>−1</sup>). Full cells assembled with LLNSZTO electrolyte, lithium metal anode, and LiFePO<sub>4</sub> (LFP) cathode exhibit excellent capacity retention of 86.81% after 200 cycles at room temperature. Moreover, the superior ionic conductivity of LLNSZTO enables all solid-state battery with high-loading LFP cathode (&gt;12 mg cm<sup>−2</sup>), achieving stable cycling exceeding 120 cycles. The large area pouch cell (5.5 cm × 8 cm) exhibits stable long-term cycling performance, showing a capacity retention of 96.50% after 50 cycles.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Entropy Strategy Flattening Lithium Ion Migration Energy Landscape to Enhance the Conductivity of Garnet-Type Solid-State Electrolytes\",\"authors\":\"Shuhan Wang, Xiaojuan Wen, Zhenweican Huang, Haoyang Xu, Fengxia Fan, Xinxiang Wang, Guilei Tian, Sheng Liu, Pengfei Liu, Chuan Wang, Chenrui Zeng, Chaozhu Shu, Zhenxing Liang\",\"doi\":\"10.1002/adfm.202416389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Garnet-type solid-state electrolytes with exceptional stability are believed to promote the commercialization of all solid-state lithium metal batteries. However, the extensive application of garnet-type solid-state electrolytes is greatly impeded on account of their low ionic conductivity. Herein, a high-entropy fast lithium-ion conductor Li<sub>7</sub>(La,Nd,Sr)<sub>3</sub>(Zr,Ta)<sub>2</sub>O<sub>12</sub> (LLNSZTO) with high lattice distortion is designed. It is found that the enhanced ionic conductivity of the high entropy garnet-type solid-state electrolyte LLNSZTO is achieved by introducing disorder in the lattice, which creates fast ion penetration paths with flattened energy landscapes within the pristine ordered lattice. Thus, the prepared high-entropy garnet-type solid electrolyte LLNSZTO exhibits low activation energy for Li<sup>+</sup> migration (0.34 eV) and elevated ionic conductivity (6.26 × 10<sup>−4</sup> S cm<sup>−1</sup>). Full cells assembled with LLNSZTO electrolyte, lithium metal anode, and LiFePO<sub>4</sub> (LFP) cathode exhibit excellent capacity retention of 86.81% after 200 cycles at room temperature. Moreover, the superior ionic conductivity of LLNSZTO enables all solid-state battery with high-loading LFP cathode (&gt;12 mg cm<sup>−2</sup>), achieving stable cycling exceeding 120 cycles. The large area pouch cell (5.5 cm × 8 cm) exhibits stable long-term cycling performance, showing a capacity retention of 96.50% after 50 cycles.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202416389\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202416389","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

石榴石型固态电解质具有优异的稳定性,被认为可以促进所有固态锂金属电池的商业化。然而,由于石榴石型固态电解质的离子电导率较低,其广泛应用受到很大阻碍。本文设计了一种具有高晶格畸变的高熵快速锂离子导体 Li7(La,Nd,Sr)3(Zr,Ta)2O12(LLNSZTO)。研究发现,高熵石榴石型固态电解质 LLNSZTO 离子电导率的增强是通过在晶格中引入无序性来实现的,无序性在原始有序晶格中形成了能量景观扁平化的快速离子穿透路径。因此,制备的高熵石榴石型固态电解质 LLNSZTO 具有较低的 Li+ 迁移活化能(0.34 eV)和较高的离子电导率(6.26 × 10-4 S cm-1)。使用 LLNSZTO 电解质、锂金属阳极和磷酸铁锂(LFP)阴极组装的全电池在室温下循环 200 次后,容量保持率高达 86.81%。此外,LLNSZTO 优越的离子导电性使所有固态电池都能使用高负载 LFP 正极(12 mg cm-2),实现超过 120 次的稳定循环。大面积袋式电池(5.5 厘米 × 8 厘米)表现出稳定的长期循环性能,50 次循环后容量保持率达到 96.50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Entropy Strategy Flattening Lithium Ion Migration Energy Landscape to Enhance the Conductivity of Garnet-Type Solid-State Electrolytes

High-Entropy Strategy Flattening Lithium Ion Migration Energy Landscape to Enhance the Conductivity of Garnet-Type Solid-State Electrolytes
Garnet-type solid-state electrolytes with exceptional stability are believed to promote the commercialization of all solid-state lithium metal batteries. However, the extensive application of garnet-type solid-state electrolytes is greatly impeded on account of their low ionic conductivity. Herein, a high-entropy fast lithium-ion conductor Li7(La,Nd,Sr)3(Zr,Ta)2O12 (LLNSZTO) with high lattice distortion is designed. It is found that the enhanced ionic conductivity of the high entropy garnet-type solid-state electrolyte LLNSZTO is achieved by introducing disorder in the lattice, which creates fast ion penetration paths with flattened energy landscapes within the pristine ordered lattice. Thus, the prepared high-entropy garnet-type solid electrolyte LLNSZTO exhibits low activation energy for Li+ migration (0.34 eV) and elevated ionic conductivity (6.26 × 10−4 S cm−1). Full cells assembled with LLNSZTO electrolyte, lithium metal anode, and LiFePO4 (LFP) cathode exhibit excellent capacity retention of 86.81% after 200 cycles at room temperature. Moreover, the superior ionic conductivity of LLNSZTO enables all solid-state battery with high-loading LFP cathode (>12 mg cm−2), achieving stable cycling exceeding 120 cycles. The large area pouch cell (5.5 cm × 8 cm) exhibits stable long-term cycling performance, showing a capacity retention of 96.50% after 50 cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信