Calvin Raab, Janek Rieger, Atreyie Ghosh, Joseph L. Spellberg, Sarah B. King
{"title":"二维 MXenes 中的表面等离子体","authors":"Calvin Raab, Janek Rieger, Atreyie Ghosh, Joseph L. Spellberg, Sarah B. King","doi":"10.1021/acs.jpclett.4c02882","DOIUrl":null,"url":null,"abstract":"MXenes, a class of layered two-dimensional transition metal carbides and nitrides, exhibit excellent optoelectronic properties and show promise for fields ranging from photonics and communications to energy storage and catalysis. Some members of the MXene family are metallic and exhibit large in-plane conductivity, making them possibly suited for 2D plasmonics. The highly variable chemical structure of MXenes offers a broad chemical space to tune material properties for plasmonic applications, including plasmon-enhanced catalysis, surface-enhanced Raman spectroscopy (SERS), and electromagnetic shielding. However, this synthetic complexity has also presented several roadblocks in the process of moving MXene plasmonics into applications. For example, in the prototypical MXene Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, there remains disagreement over the bulk plasmon energy and the assignment of a prominent resonance around 1.7 eV. We discuss fundamental models and theories of plasmon physics and apply these models to MXenes in order to clarify some of these problems. We outline the potential for hyperbolic plasmons in MXenes and propose new avenues for MXene photonics research.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Plasmons in Two-Dimensional MXenes\",\"authors\":\"Calvin Raab, Janek Rieger, Atreyie Ghosh, Joseph L. Spellberg, Sarah B. King\",\"doi\":\"10.1021/acs.jpclett.4c02882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MXenes, a class of layered two-dimensional transition metal carbides and nitrides, exhibit excellent optoelectronic properties and show promise for fields ranging from photonics and communications to energy storage and catalysis. Some members of the MXene family are metallic and exhibit large in-plane conductivity, making them possibly suited for 2D plasmonics. The highly variable chemical structure of MXenes offers a broad chemical space to tune material properties for plasmonic applications, including plasmon-enhanced catalysis, surface-enhanced Raman spectroscopy (SERS), and electromagnetic shielding. However, this synthetic complexity has also presented several roadblocks in the process of moving MXene plasmonics into applications. For example, in the prototypical MXene Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, there remains disagreement over the bulk plasmon energy and the assignment of a prominent resonance around 1.7 eV. We discuss fundamental models and theories of plasmon physics and apply these models to MXenes in order to clarify some of these problems. We outline the potential for hyperbolic plasmons in MXenes and propose new avenues for MXene photonics research.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c02882\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02882","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
MXenes, a class of layered two-dimensional transition metal carbides and nitrides, exhibit excellent optoelectronic properties and show promise for fields ranging from photonics and communications to energy storage and catalysis. Some members of the MXene family are metallic and exhibit large in-plane conductivity, making them possibly suited for 2D plasmonics. The highly variable chemical structure of MXenes offers a broad chemical space to tune material properties for plasmonic applications, including plasmon-enhanced catalysis, surface-enhanced Raman spectroscopy (SERS), and electromagnetic shielding. However, this synthetic complexity has also presented several roadblocks in the process of moving MXene plasmonics into applications. For example, in the prototypical MXene Ti3C2Tx, there remains disagreement over the bulk plasmon energy and the assignment of a prominent resonance around 1.7 eV. We discuss fundamental models and theories of plasmon physics and apply these models to MXenes in order to clarify some of these problems. We outline the potential for hyperbolic plasmons in MXenes and propose new avenues for MXene photonics research.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.