Joseph P. Briggs, Yinan Liu, P. Craig Taylor, Meenakshi Singh, Reuben T. Collins, Carolyn A. Koh
{"title":"低钠 II 型硅凝胶薄膜自旋动力学特性分析","authors":"Joseph P. Briggs, Yinan Liu, P. Craig Taylor, Meenakshi Singh, Reuben T. Collins, Carolyn A. Koh","doi":"10.1063/5.0230407","DOIUrl":null,"url":null,"abstract":"Type II Si clathrate is a Si-based, crystalline alternative to diamond silicon with interesting optoelectronic properties. Here, a pulsed electron paramagnetic resonance study of the spin dynamics of sodium-doped, type II NaxSi136 silicon clathrate films is reported. Focusing on the hyperfine lines of isolated Na atoms, the temperature dependence of the electron spin dynamics is examined from 6 to 25 K. The measurements exhibit multi-exponential decay, indicating multiple spin relaxation rates in the system. As expected, spin relaxation time (T1) increases rapidly with decreasing temperature, reaching ∼300 μs at 6.4 K. The phase memory (TM) shows less temperature dependence with a value of ∼3 μs at the same temperature. The temperature dependence of T1 exhibits Arrhenius behavior in the measurement range consistent with an Orbach pathway. There are strong similarities to the spin behavior of other defect donors in diamond silicon. The results provide insights into the potential of Si clathrates for spin-based applications.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of low sodium type II silicon clathrate film spin dynamics\",\"authors\":\"Joseph P. Briggs, Yinan Liu, P. Craig Taylor, Meenakshi Singh, Reuben T. Collins, Carolyn A. Koh\",\"doi\":\"10.1063/5.0230407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type II Si clathrate is a Si-based, crystalline alternative to diamond silicon with interesting optoelectronic properties. Here, a pulsed electron paramagnetic resonance study of the spin dynamics of sodium-doped, type II NaxSi136 silicon clathrate films is reported. Focusing on the hyperfine lines of isolated Na atoms, the temperature dependence of the electron spin dynamics is examined from 6 to 25 K. The measurements exhibit multi-exponential decay, indicating multiple spin relaxation rates in the system. As expected, spin relaxation time (T1) increases rapidly with decreasing temperature, reaching ∼300 μs at 6.4 K. The phase memory (TM) shows less temperature dependence with a value of ∼3 μs at the same temperature. The temperature dependence of T1 exhibits Arrhenius behavior in the measurement range consistent with an Orbach pathway. There are strong similarities to the spin behavior of other defect donors in diamond silicon. The results provide insights into the potential of Si clathrates for spin-based applications.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0230407\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0230407","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
二型硅凝胶是一种硅基晶体,可替代金刚石硅,具有有趣的光电特性。本文报告了对掺钠的 II 型 NaxSi136 硅克拉斯薄膜自旋动力学的脉冲电子顺磁共振研究。测量结果呈现多指数衰减,表明系统中存在多种自旋弛豫速率。正如预期的那样,自旋弛豫时间(T1)随着温度的降低而迅速增加,在 6.4 K 时达到 ∼300 μs。在测量范围内,T1 的温度依赖性表现出与奥尔巴赫途径一致的阿伦尼乌斯行为。这与金刚石硅中其他缺陷供体的自旋行为非常相似。这些结果让我们深入了解了硅克拉层在自旋应用方面的潜力。
Characterization of low sodium type II silicon clathrate film spin dynamics
Type II Si clathrate is a Si-based, crystalline alternative to diamond silicon with interesting optoelectronic properties. Here, a pulsed electron paramagnetic resonance study of the spin dynamics of sodium-doped, type II NaxSi136 silicon clathrate films is reported. Focusing on the hyperfine lines of isolated Na atoms, the temperature dependence of the electron spin dynamics is examined from 6 to 25 K. The measurements exhibit multi-exponential decay, indicating multiple spin relaxation rates in the system. As expected, spin relaxation time (T1) increases rapidly with decreasing temperature, reaching ∼300 μs at 6.4 K. The phase memory (TM) shows less temperature dependence with a value of ∼3 μs at the same temperature. The temperature dependence of T1 exhibits Arrhenius behavior in the measurement range consistent with an Orbach pathway. There are strong similarities to the spin behavior of other defect donors in diamond silicon. The results provide insights into the potential of Si clathrates for spin-based applications.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.