Xiangnan Li, Xinyu Tang, Mengdan Zhang, Ming Ge, Xiaojian Liu, Yuantao Cui, Yiwei Xu, Huishuang Zhang, Yanhong Yin, Shu-Ting Yang
{"title":"构建高性能球形 Na 离子层状氧化物阴极的多种策略","authors":"Xiangnan Li, Xinyu Tang, Mengdan Zhang, Ming Ge, Xiaojian Liu, Yuantao Cui, Yiwei Xu, Huishuang Zhang, Yanhong Yin, Shu-Ting Yang","doi":"10.1021/acs.nanolett.4c02644","DOIUrl":null,"url":null,"abstract":"The development prospect of layered transition metal oxides in sodium-ion batteries is excellent, but there are some problems, such as poor cycle stability and a complex phase transition. The spherical NaNi<sub>0.25</sub>Fe<sub>0.15</sub>Mn<sub>0.3</sub>Ti<sub>0.1</sub>Sn<sub>0.05</sub>Co<sub>0.05</sub>Li<sub>0.1</sub>O<sub>2</sub> (SP-HEO) has been developed to address the challenges faced by O3-type layered oxide in sodium-ion batteries. The SP-HEO material is synthesized by piling and high entropy. The multiple strategies combine to enhance the electrochemical performance and air stability. The SP-HEO demonstrated a specific discharge capacity of 150.1 mA h g<sup>–1</sup> at 0.1 C and 100.4 mA h g<sup>–1</sup> at 7 C. Ex situ XRD analysis confirmed that the SP-HEO effectively retards complex phase transitions. This study not only introduces a high-entropy design for high tap density spherical storage materials but also dispels industry concerns regarding the performance of sodium ion layered oxide cathode materials.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Strategies to Build High-Performance Spherical Na-Ion Layered Oxide Cathodes\",\"authors\":\"Xiangnan Li, Xinyu Tang, Mengdan Zhang, Ming Ge, Xiaojian Liu, Yuantao Cui, Yiwei Xu, Huishuang Zhang, Yanhong Yin, Shu-Ting Yang\",\"doi\":\"10.1021/acs.nanolett.4c02644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development prospect of layered transition metal oxides in sodium-ion batteries is excellent, but there are some problems, such as poor cycle stability and a complex phase transition. The spherical NaNi<sub>0.25</sub>Fe<sub>0.15</sub>Mn<sub>0.3</sub>Ti<sub>0.1</sub>Sn<sub>0.05</sub>Co<sub>0.05</sub>Li<sub>0.1</sub>O<sub>2</sub> (SP-HEO) has been developed to address the challenges faced by O3-type layered oxide in sodium-ion batteries. The SP-HEO material is synthesized by piling and high entropy. The multiple strategies combine to enhance the electrochemical performance and air stability. The SP-HEO demonstrated a specific discharge capacity of 150.1 mA h g<sup>–1</sup> at 0.1 C and 100.4 mA h g<sup>–1</sup> at 7 C. Ex situ XRD analysis confirmed that the SP-HEO effectively retards complex phase transitions. This study not only introduces a high-entropy design for high tap density spherical storage materials but also dispels industry concerns regarding the performance of sodium ion layered oxide cathode materials.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02644\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02644","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
层状过渡金属氧化物在钠离子电池中的发展前景非常好,但也存在一些问题,如循环稳定性差、相变复杂等。针对钠离子电池中 O3 型层状氧化物所面临的挑战,我们开发了球形 NaNi0.25Fe0.15Mn0.3Ti0.1Sn0.05Co0.05Li0.1O2 (SP-HEO)。SP-HEO 材料是通过堆积和高熵合成的。多种策略相结合,提高了电化学性能和空气稳定性。SP-HEO 在 0.1 C 时的比放电容量为 150.1 mA h g-1,在 7 C 时的比放电容量为 100.4 mA h g-1。这项研究不仅介绍了一种高熵设计的高分带密度球形存储材料,还消除了业界对钠离子层状氧化物阴极材料性能的担忧。
Multiple Strategies to Build High-Performance Spherical Na-Ion Layered Oxide Cathodes
The development prospect of layered transition metal oxides in sodium-ion batteries is excellent, but there are some problems, such as poor cycle stability and a complex phase transition. The spherical NaNi0.25Fe0.15Mn0.3Ti0.1Sn0.05Co0.05Li0.1O2 (SP-HEO) has been developed to address the challenges faced by O3-type layered oxide in sodium-ion batteries. The SP-HEO material is synthesized by piling and high entropy. The multiple strategies combine to enhance the electrochemical performance and air stability. The SP-HEO demonstrated a specific discharge capacity of 150.1 mA h g–1 at 0.1 C and 100.4 mA h g–1 at 7 C. Ex situ XRD analysis confirmed that the SP-HEO effectively retards complex phase transitions. This study not only introduces a high-entropy design for high tap density spherical storage materials but also dispels industry concerns regarding the performance of sodium ion layered oxide cathode materials.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.