{"title":"β-二酮及其衍生物在光催化剂设计中的作用","authors":"Wentao Zhang , Shuangshuang Wei , Guoyang Zhang , Jianghua Yang , Lele Peng , Shujuan Zhang","doi":"10.1016/j.ccr.2024.216318","DOIUrl":null,"url":null,"abstract":"<div><div>Organic ligands play pivotal roles in the synthesis and modification of photocatalysts. Small molecular diketones, exemplified by acetylacetone (acac), are a promising class of ligands. Nevertheless, a comprehensive review of their roles in photocatalysis has not yet been conducted. This gap hinders the rational design and application of photocatalysts by using diketones as functional ligands. It is therefore imperative to provide a comprehensive examination of this topic. This review critically summarizes the utilization of acac in photocatalysis from four aspects: the chemical nature and reactivity of acac, the roles of acac in the synthesis and modification of photocatalysts (especially the well-known TiO<sub>2</sub>), its influence on the photocatalytic processes, and the existing challenges and future prospects for acac-mediated photocatalysis. By providing a critical analysis of the established applications of acac in photocatalysis, we aim to inspire further advancements in the field rooted in fundamental theoretical principles.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"524 ","pages":"Article 216318"},"PeriodicalIF":20.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The roles of β-diketones and their derivatives in the design of photocatalysts\",\"authors\":\"Wentao Zhang , Shuangshuang Wei , Guoyang Zhang , Jianghua Yang , Lele Peng , Shujuan Zhang\",\"doi\":\"10.1016/j.ccr.2024.216318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Organic ligands play pivotal roles in the synthesis and modification of photocatalysts. Small molecular diketones, exemplified by acetylacetone (acac), are a promising class of ligands. Nevertheless, a comprehensive review of their roles in photocatalysis has not yet been conducted. This gap hinders the rational design and application of photocatalysts by using diketones as functional ligands. It is therefore imperative to provide a comprehensive examination of this topic. This review critically summarizes the utilization of acac in photocatalysis from four aspects: the chemical nature and reactivity of acac, the roles of acac in the synthesis and modification of photocatalysts (especially the well-known TiO<sub>2</sub>), its influence on the photocatalytic processes, and the existing challenges and future prospects for acac-mediated photocatalysis. By providing a critical analysis of the established applications of acac in photocatalysis, we aim to inspire further advancements in the field rooted in fundamental theoretical principles.</div></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":\"524 \",\"pages\":\"Article 216318\"},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010854524006647\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524006647","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
The roles of β-diketones and their derivatives in the design of photocatalysts
Organic ligands play pivotal roles in the synthesis and modification of photocatalysts. Small molecular diketones, exemplified by acetylacetone (acac), are a promising class of ligands. Nevertheless, a comprehensive review of their roles in photocatalysis has not yet been conducted. This gap hinders the rational design and application of photocatalysts by using diketones as functional ligands. It is therefore imperative to provide a comprehensive examination of this topic. This review critically summarizes the utilization of acac in photocatalysis from four aspects: the chemical nature and reactivity of acac, the roles of acac in the synthesis and modification of photocatalysts (especially the well-known TiO2), its influence on the photocatalytic processes, and the existing challenges and future prospects for acac-mediated photocatalysis. By providing a critical analysis of the established applications of acac in photocatalysis, we aim to inspire further advancements in the field rooted in fundamental theoretical principles.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.