纳米间隙诱导的相位控制揭示了介质内部的光动量

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gopal Verma, Iver Brevik, Kavita Mehlawat, Wei Li
{"title":"纳米间隙诱导的相位控制揭示了介质内部的光动量","authors":"Gopal Verma, Iver Brevik, Kavita Mehlawat, Wei Li","doi":"10.1021/acsphotonics.4c01388","DOIUrl":null,"url":null,"abstract":"The deflection of a submerged mirror due to light pressure was used to compare competing theories of light momentum inside a dielectric medium. In this case, a significant bottleneck is to find a mirror that reflects light with zero phase shift without requiring multiple sets of metamaterial mirrors, as conventional mirrors reflect light with a 180° phase shift, demonstrating (formally, as we shall see) the Minkowski momentum. Introducing a nanometric gap between the mirror and the convex lens can vary the phase angle from 0 to 180°, covering the momentum range between the Abraham and Minkowski values (2ℏω<sub>0</sub>/<i>nc</i>, 2<i>n</i>ℏω<sub>0</sub>/<i>c</i>). Our study used interferometry to measure the deflection of a submerged, partially metallic-coated vertical cantilever caused by radiation pressure with nanometric precision. Our results showed that light momentum within a dielectric follows Minkowski’s form (2<i>n</i>ℏω<sub>0</sub>/<i>c</i>) for conventional mirrors. However, with a nanogap between the convex lens and a vertically suspended fiber, the momentum transferred to a submerged mirror varied from 2ℏω<sub>0</sub>/<i>nc</i> to 2<i>n</i>ℏω<sub>0</sub>/<i>c</i>, depending on the mirror’s phase angle. This approach takes an intriguing step illustrating the rivaling theory of light momentum in a medium: numerical simulations based upon the formula derived by [<contrib-group><span>Mansuripur, M.</span></contrib-group> <cite><i>Phys. Rev. A</i></cite> <span>2012</span>, <em>85</em>, <elocation-id>023807</elocation-id>]agree with our experimental results. These basic results imply promising applications in microfluidics and optofluidics.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanogap-Induced Phase Control Reveals the Momentum of Light Inside the Dielectric Medium\",\"authors\":\"Gopal Verma, Iver Brevik, Kavita Mehlawat, Wei Li\",\"doi\":\"10.1021/acsphotonics.4c01388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deflection of a submerged mirror due to light pressure was used to compare competing theories of light momentum inside a dielectric medium. In this case, a significant bottleneck is to find a mirror that reflects light with zero phase shift without requiring multiple sets of metamaterial mirrors, as conventional mirrors reflect light with a 180° phase shift, demonstrating (formally, as we shall see) the Minkowski momentum. Introducing a nanometric gap between the mirror and the convex lens can vary the phase angle from 0 to 180°, covering the momentum range between the Abraham and Minkowski values (2ℏω<sub>0</sub>/<i>nc</i>, 2<i>n</i>ℏω<sub>0</sub>/<i>c</i>). Our study used interferometry to measure the deflection of a submerged, partially metallic-coated vertical cantilever caused by radiation pressure with nanometric precision. Our results showed that light momentum within a dielectric follows Minkowski’s form (2<i>n</i>ℏω<sub>0</sub>/<i>c</i>) for conventional mirrors. However, with a nanogap between the convex lens and a vertically suspended fiber, the momentum transferred to a submerged mirror varied from 2ℏω<sub>0</sub>/<i>nc</i> to 2<i>n</i>ℏω<sub>0</sub>/<i>c</i>, depending on the mirror’s phase angle. This approach takes an intriguing step illustrating the rivaling theory of light momentum in a medium: numerical simulations based upon the formula derived by [<contrib-group><span>Mansuripur, M.</span></contrib-group> <cite><i>Phys. Rev. A</i></cite> <span>2012</span>, <em>85</em>, <elocation-id>023807</elocation-id>]agree with our experimental results. These basic results imply promising applications in microfluidics and optofluidics.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c01388\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01388","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用光压导致的浸没镜面偏转来比较介电质内光动量的不同理论。在这种情况下,一个重要的瓶颈是找到一种能以零相移反射光的镜子,而不需要多组超材料镜子,因为传统镜子以 180° 相移反射光,证明了(我们将看到的)闵科夫斯基动量。在镜子和凸透镜之间引入一个纳米级间隙,可以使相位角在 0 到 180° 之间变化,涵盖了亚伯拉罕值和明考斯基值(2ℏω0/nc, 2nℏω0/c)之间的动量范围。我们的研究采用干涉测量法,以纳米级精度测量了由辐射压力引起的浸没式部分金属涂层垂直悬臂的偏转。我们的研究结果表明,电介质中的光动量遵循传统反射镜的闵科夫斯基形式(2nℏω0/c)。然而,在凸透镜和垂直悬浮光纤之间有一个纳米间隙时,根据镜子的相位角,传递到浸没镜面的动量从 2ℏω0/nc 到 2nℏω0/c 不等。这种方法迈出了引人入胜的一步,说明了介质中光动量的匹敌理论:根据[Mansuripur, M. Phys. Rev. A 2012, 85, 023807]推导的公式进行的数值模拟与我们的实验结果一致。这些基本结果意味着微流体学和光流体学的应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanogap-Induced Phase Control Reveals the Momentum of Light Inside the Dielectric Medium

Nanogap-Induced Phase Control Reveals the Momentum of Light Inside the Dielectric Medium
The deflection of a submerged mirror due to light pressure was used to compare competing theories of light momentum inside a dielectric medium. In this case, a significant bottleneck is to find a mirror that reflects light with zero phase shift without requiring multiple sets of metamaterial mirrors, as conventional mirrors reflect light with a 180° phase shift, demonstrating (formally, as we shall see) the Minkowski momentum. Introducing a nanometric gap between the mirror and the convex lens can vary the phase angle from 0 to 180°, covering the momentum range between the Abraham and Minkowski values (2ℏω0/nc, 2nℏω0/c). Our study used interferometry to measure the deflection of a submerged, partially metallic-coated vertical cantilever caused by radiation pressure with nanometric precision. Our results showed that light momentum within a dielectric follows Minkowski’s form (2nℏω0/c) for conventional mirrors. However, with a nanogap between the convex lens and a vertically suspended fiber, the momentum transferred to a submerged mirror varied from 2ℏω0/nc to 2nℏω0/c, depending on the mirror’s phase angle. This approach takes an intriguing step illustrating the rivaling theory of light momentum in a medium: numerical simulations based upon the formula derived by [Mansuripur, M. Phys. Rev. A 2012, 85, 023807]agree with our experimental results. These basic results imply promising applications in microfluidics and optofluidics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信