Xueyao Chen, Yaoming Ge, Wei Shi, Mengting Yang, Qing Zhou and Yang Pan*,
{"title":"卤代消毒副产物的雌激素干扰效应:综合评估与比较","authors":"Xueyao Chen, Yaoming Ge, Wei Shi, Mengting Yang, Qing Zhou and Yang Pan*, ","doi":"10.1021/acs.est.4c0722310.1021/acs.est.4c07223","DOIUrl":null,"url":null,"abstract":"<p >Drinking water halogenated disinfection byproducts (DBPs) have become an increasing health concern. However, the endocrine-disrupting effects of DBPs have not been well evaluated, and the limited available data have inhibited a comprehensive understanding of their health risks. In this study, a total of 43 DBPs were evaluated for their estro-androgenic effects using two types of human breast cancer cells. Among the tested DBPs, 16 exhibited estrogenic/antiestrogenic/androgenic/antiandrogenic effects, and the effects could be observed even at concentrations typically detected in drinking water. Iodinated and polyhalogenated DBPs generally showed higher effects than other species. For a broader comparison, DBP endocrine-disrupting effect data from this study and previous studies were summarized. It was found that the endocrine disruption efficacy of DBPs followed the rank order of iodinated > brominated > chlorinated species, and halophenolic DBPs were potential endocrine-disrupting compounds. Moreover, molecular docking results demonstrated that the binding of DBPs to estro-androgenic receptors was dominated by hydrophobic bonding, hydrogen bonding, halogen bonding, and van der Waals forces. The force strength and molecular volume were related to the magnitude of the estro-androgenic effects. Iodinated DBPs and polyhalogenated DBPs tended to have larger binding forces than other analogues and thus exhibited stronger effects.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 45","pages":"20190–20200 20190–20200"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estro-Androgenic Disrupting Effects of Halogenated Disinfection Byproducts: A Comprehensive Evaluation and Comparison\",\"authors\":\"Xueyao Chen, Yaoming Ge, Wei Shi, Mengting Yang, Qing Zhou and Yang Pan*, \",\"doi\":\"10.1021/acs.est.4c0722310.1021/acs.est.4c07223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Drinking water halogenated disinfection byproducts (DBPs) have become an increasing health concern. However, the endocrine-disrupting effects of DBPs have not been well evaluated, and the limited available data have inhibited a comprehensive understanding of their health risks. In this study, a total of 43 DBPs were evaluated for their estro-androgenic effects using two types of human breast cancer cells. Among the tested DBPs, 16 exhibited estrogenic/antiestrogenic/androgenic/antiandrogenic effects, and the effects could be observed even at concentrations typically detected in drinking water. Iodinated and polyhalogenated DBPs generally showed higher effects than other species. For a broader comparison, DBP endocrine-disrupting effect data from this study and previous studies were summarized. It was found that the endocrine disruption efficacy of DBPs followed the rank order of iodinated > brominated > chlorinated species, and halophenolic DBPs were potential endocrine-disrupting compounds. Moreover, molecular docking results demonstrated that the binding of DBPs to estro-androgenic receptors was dominated by hydrophobic bonding, hydrogen bonding, halogen bonding, and van der Waals forces. The force strength and molecular volume were related to the magnitude of the estro-androgenic effects. Iodinated DBPs and polyhalogenated DBPs tended to have larger binding forces than other analogues and thus exhibited stronger effects.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"58 45\",\"pages\":\"20190–20200 20190–20200\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.4c07223\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c07223","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Estro-Androgenic Disrupting Effects of Halogenated Disinfection Byproducts: A Comprehensive Evaluation and Comparison
Drinking water halogenated disinfection byproducts (DBPs) have become an increasing health concern. However, the endocrine-disrupting effects of DBPs have not been well evaluated, and the limited available data have inhibited a comprehensive understanding of their health risks. In this study, a total of 43 DBPs were evaluated for their estro-androgenic effects using two types of human breast cancer cells. Among the tested DBPs, 16 exhibited estrogenic/antiestrogenic/androgenic/antiandrogenic effects, and the effects could be observed even at concentrations typically detected in drinking water. Iodinated and polyhalogenated DBPs generally showed higher effects than other species. For a broader comparison, DBP endocrine-disrupting effect data from this study and previous studies were summarized. It was found that the endocrine disruption efficacy of DBPs followed the rank order of iodinated > brominated > chlorinated species, and halophenolic DBPs were potential endocrine-disrupting compounds. Moreover, molecular docking results demonstrated that the binding of DBPs to estro-androgenic receptors was dominated by hydrophobic bonding, hydrogen bonding, halogen bonding, and van der Waals forces. The force strength and molecular volume were related to the magnitude of the estro-androgenic effects. Iodinated DBPs and polyhalogenated DBPs tended to have larger binding forces than other analogues and thus exhibited stronger effects.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.