通过机械互锁和动态锚促进偶氮苯单分子连接的光响应

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shun-Da Wu, Zi-Zhen Chen, Wen-Jing Sun, Li-Yu-Yang Shi, An-Kang Shen, Jing-Jing Cao, Zitong Liu*, Colin J. Lambert* and Hao-Li Zhang*, 
{"title":"通过机械互锁和动态锚促进偶氮苯单分子连接的光响应","authors":"Shun-Da Wu,&nbsp;Zi-Zhen Chen,&nbsp;Wen-Jing Sun,&nbsp;Li-Yu-Yang Shi,&nbsp;An-Kang Shen,&nbsp;Jing-Jing Cao,&nbsp;Zitong Liu*,&nbsp;Colin J. Lambert* and Hao-Li Zhang*,&nbsp;","doi":"10.1021/acsnano.4c1301010.1021/acsnano.4c13010","DOIUrl":null,"url":null,"abstract":"<p >As the most classic photoisomerization system, azobenzene has been widely utilized as a building unit in various photoswitching applications. However, attempts to build azobenzene-based single-molecule photoswitches have met with limited success, giving low on/off ratios. Herein, we demonstrate two designs of azobenzene-based photoresponsive single-molecule junctions, based on mechanically interlocked diazocine and azobenzene-based dynamic anchors, respectively. Molecular conductance measurements using the scanning tunneling microscope breaking junction (STMBJ) technique revealed dramatic conductance changes upon photoillumination, achieving a high on/off ratio of ∼3.7. Using density functional theory (DFT), we revealed peculiar quantum interference (QI) effects in the diazocine molecular switch, indicating that diazocine is an excellent candidate for molecular photoswitches. The asymmetric azobenzene devices with a dynamic anchor exhibit switching behavior between a fully off state and a highly conductive state associated with the <i>trans</i>/<i>cis</i> conformation transition. The findings of this work not only present the design and development of functional molecular devices based on azobenzene units but also provide insight into the fundamental properties of light-induced quantum interference in azobenzene-based molecular devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31547–31558 31547–31558"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting the Photoresponse of Azobenzene Single-Molecule Junctions via Mechanical Interlock and Dynamic Anchor\",\"authors\":\"Shun-Da Wu,&nbsp;Zi-Zhen Chen,&nbsp;Wen-Jing Sun,&nbsp;Li-Yu-Yang Shi,&nbsp;An-Kang Shen,&nbsp;Jing-Jing Cao,&nbsp;Zitong Liu*,&nbsp;Colin J. Lambert* and Hao-Li Zhang*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1301010.1021/acsnano.4c13010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As the most classic photoisomerization system, azobenzene has been widely utilized as a building unit in various photoswitching applications. However, attempts to build azobenzene-based single-molecule photoswitches have met with limited success, giving low on/off ratios. Herein, we demonstrate two designs of azobenzene-based photoresponsive single-molecule junctions, based on mechanically interlocked diazocine and azobenzene-based dynamic anchors, respectively. Molecular conductance measurements using the scanning tunneling microscope breaking junction (STMBJ) technique revealed dramatic conductance changes upon photoillumination, achieving a high on/off ratio of ∼3.7. Using density functional theory (DFT), we revealed peculiar quantum interference (QI) effects in the diazocine molecular switch, indicating that diazocine is an excellent candidate for molecular photoswitches. The asymmetric azobenzene devices with a dynamic anchor exhibit switching behavior between a fully off state and a highly conductive state associated with the <i>trans</i>/<i>cis</i> conformation transition. The findings of this work not only present the design and development of functional molecular devices based on azobenzene units but also provide insight into the fundamental properties of light-induced quantum interference in azobenzene-based molecular devices.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 45\",\"pages\":\"31547–31558 31547–31558\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c13010\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c13010","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为最经典的光异构化体系,偶氮苯已被广泛用作各种光开关应用的构建单元。然而,人们在尝试制造基于偶氮苯的单分子光开关时取得的成功很有限,因为其开关率很低。在此,我们展示了两种基于偶氮苯的光致发光单分子结的设计,它们分别基于机械互锁的重氮和偶氮苯基动态锚。利用扫描隧道显微镜断裂结(STMBJ)技术进行的分子电导测量显示,光照时电导发生了巨大变化,达到了 3.7 ∼ 3.7 的高导通/断通比。利用密度泛函理论(DFT),我们揭示了重氮化合物分子开关中奇特的量子干涉(QI)效应,表明重氮化合物是分子光开关的理想候选材料。带有动态锚的不对称偶氮苯器件在完全关闭状态和与反式/顺式构象转变相关的高导电状态之间表现出切换行为。这项研究成果不仅展示了基于偶氮苯单元的功能性分子器件的设计和开发,还深入揭示了光诱导量子干涉在基于偶氮苯的分子器件中的基本特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boosting the Photoresponse of Azobenzene Single-Molecule Junctions via Mechanical Interlock and Dynamic Anchor

Boosting the Photoresponse of Azobenzene Single-Molecule Junctions via Mechanical Interlock and Dynamic Anchor

As the most classic photoisomerization system, azobenzene has been widely utilized as a building unit in various photoswitching applications. However, attempts to build azobenzene-based single-molecule photoswitches have met with limited success, giving low on/off ratios. Herein, we demonstrate two designs of azobenzene-based photoresponsive single-molecule junctions, based on mechanically interlocked diazocine and azobenzene-based dynamic anchors, respectively. Molecular conductance measurements using the scanning tunneling microscope breaking junction (STMBJ) technique revealed dramatic conductance changes upon photoillumination, achieving a high on/off ratio of ∼3.7. Using density functional theory (DFT), we revealed peculiar quantum interference (QI) effects in the diazocine molecular switch, indicating that diazocine is an excellent candidate for molecular photoswitches. The asymmetric azobenzene devices with a dynamic anchor exhibit switching behavior between a fully off state and a highly conductive state associated with the trans/cis conformation transition. The findings of this work not only present the design and development of functional molecular devices based on azobenzene units but also provide insight into the fundamental properties of light-induced quantum interference in azobenzene-based molecular devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信