具有改进型孔传输层的亚微米级纹理化佐彻拉尔斯基硅底电池上的过氧化物硅/硅串联太阳能电池转换效率超过 30

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Angelika Harter*, Kerem Artuk, Florian Mathies, Orestis Karalis, Hannes Hempel, Amran Al-Ashouri, Steve Albrecht, Rutger Schlatmann, Christophe Ballif, Bernd Stannowski and Christian M. Wolff*, 
{"title":"具有改进型孔传输层的亚微米级纹理化佐彻拉尔斯基硅底电池上的过氧化物硅/硅串联太阳能电池转换效率超过 30","authors":"Angelika Harter*,&nbsp;Kerem Artuk,&nbsp;Florian Mathies,&nbsp;Orestis Karalis,&nbsp;Hannes Hempel,&nbsp;Amran Al-Ashouri,&nbsp;Steve Albrecht,&nbsp;Rutger Schlatmann,&nbsp;Christophe Ballif,&nbsp;Bernd Stannowski and Christian M. Wolff*,&nbsp;","doi":"10.1021/acsami.4c0926410.1021/acsami.4c09264","DOIUrl":null,"url":null,"abstract":"<p >In perovskite/silicon tandem solar cells, the utilization of silicon heterojunction (SHJ) solar cells as bottom cells is one of the most promising concepts. Here, we present optimization strategies for the top cell processing and their integration into SHJ bottom cells based on industrial Czochralski (Cz)-Si wafers of 140 μm thickness. We show that combining the self-assembled monolayer [4-(3,6-dimethyl-9<i>H</i>-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with an additional phosphonic acid (PA) with different functional groups, can improve film formation when used as a hole transport layer improving wettability, minimizing shunt fraction and reducing nonradiative losses at the buried interface. Transient surface photovoltage and transient photoluminescence measurements confirm that the combined Me-4PACz/PA layer has similar charge transport properties to Me-4PACz alone. Moreover, this work demonstrates the potential for thin, double-side submicron-sized textured industry-relevant silicon bottom cells yielding a high accumulated short-circuit current density of 40.2 mA/cm<sup>2</sup> and reaching a stabilized power conversion efficiency of &gt;30%. This work paves the way toward industry-compatible, highly efficient tandem cells based on a production-compatible SHJ bottom cell.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"16 45","pages":"62817–62826 62817–62826"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsami.4c09264","citationCount":"0","resultStr":"{\"title\":\"Perovskite/Silicon Tandem Solar Cells Above 30% Conversion Efficiency on Submicron-Sized Textured Czochralski-Silicon Bottom Cells with Improved Hole-Transport Layers\",\"authors\":\"Angelika Harter*,&nbsp;Kerem Artuk,&nbsp;Florian Mathies,&nbsp;Orestis Karalis,&nbsp;Hannes Hempel,&nbsp;Amran Al-Ashouri,&nbsp;Steve Albrecht,&nbsp;Rutger Schlatmann,&nbsp;Christophe Ballif,&nbsp;Bernd Stannowski and Christian M. Wolff*,&nbsp;\",\"doi\":\"10.1021/acsami.4c0926410.1021/acsami.4c09264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In perovskite/silicon tandem solar cells, the utilization of silicon heterojunction (SHJ) solar cells as bottom cells is one of the most promising concepts. Here, we present optimization strategies for the top cell processing and their integration into SHJ bottom cells based on industrial Czochralski (Cz)-Si wafers of 140 μm thickness. We show that combining the self-assembled monolayer [4-(3,6-dimethyl-9<i>H</i>-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with an additional phosphonic acid (PA) with different functional groups, can improve film formation when used as a hole transport layer improving wettability, minimizing shunt fraction and reducing nonradiative losses at the buried interface. Transient surface photovoltage and transient photoluminescence measurements confirm that the combined Me-4PACz/PA layer has similar charge transport properties to Me-4PACz alone. Moreover, this work demonstrates the potential for thin, double-side submicron-sized textured industry-relevant silicon bottom cells yielding a high accumulated short-circuit current density of 40.2 mA/cm<sup>2</sup> and reaching a stabilized power conversion efficiency of &gt;30%. This work paves the way toward industry-compatible, highly efficient tandem cells based on a production-compatible SHJ bottom cell.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"16 45\",\"pages\":\"62817–62826 62817–62826\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsami.4c09264\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c09264\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c09264","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在光伏/硅串联太阳能电池中,利用硅异质结(SHJ)太阳能电池作为底部电池是最有前途的概念之一。在此,我们以厚度为 140 μm 的工业级 Czochralski(Cz)-硅晶片为基础,介绍了顶层电池加工及其与 SHJ 底层电池集成的优化策略。我们的研究表明,将自组装单层[4-(3,6-二甲基-9H-咔唑-9-基)丁基]膦酸(Me-4PACz)与具有不同官能团的附加膦酸(PA)相结合,可改善薄膜的形成,当用作空穴传输层时,可提高润湿性,最大限度地减少分流部分,并降低埋入界面的非辐射损失。瞬态表面光电电压和瞬态光致发光测量证实,Me-4PACz/PA 组合层与单独的 Me-4PACz 具有相似的电荷传输特性。此外,这项研究还证明了薄型双面亚微米级纹理硅底电池的潜力,这种电池可产生 40.2 mA/cm2 的高累积短路电流密度,并能达到 30% 的稳定功率转换效率。这项工作为在兼容生产的 SHJ 底部电池基础上开发兼容工业的高效串联电池铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perovskite/Silicon Tandem Solar Cells Above 30% Conversion Efficiency on Submicron-Sized Textured Czochralski-Silicon Bottom Cells with Improved Hole-Transport Layers

In perovskite/silicon tandem solar cells, the utilization of silicon heterojunction (SHJ) solar cells as bottom cells is one of the most promising concepts. Here, we present optimization strategies for the top cell processing and their integration into SHJ bottom cells based on industrial Czochralski (Cz)-Si wafers of 140 μm thickness. We show that combining the self-assembled monolayer [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with an additional phosphonic acid (PA) with different functional groups, can improve film formation when used as a hole transport layer improving wettability, minimizing shunt fraction and reducing nonradiative losses at the buried interface. Transient surface photovoltage and transient photoluminescence measurements confirm that the combined Me-4PACz/PA layer has similar charge transport properties to Me-4PACz alone. Moreover, this work demonstrates the potential for thin, double-side submicron-sized textured industry-relevant silicon bottom cells yielding a high accumulated short-circuit current density of 40.2 mA/cm2 and reaching a stabilized power conversion efficiency of >30%. This work paves the way toward industry-compatible, highly efficient tandem cells based on a production-compatible SHJ bottom cell.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信