大气压下 MOF 催化室温化学固定炔烃中二氧化碳的两种可持续途径

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Subhrajyoti Ghosh, Paltan Laha, Nazir Ud Din Mir, Pritam Das, Pil-Ryung Cha and Shyam Biswas*, 
{"title":"大气压下 MOF 催化室温化学固定炔烃中二氧化碳的两种可持续途径","authors":"Subhrajyoti Ghosh,&nbsp;Paltan Laha,&nbsp;Nazir Ud Din Mir,&nbsp;Pritam Das,&nbsp;Pil-Ryung Cha and Shyam Biswas*,&nbsp;","doi":"10.1021/acs.inorgchem.4c0343110.1021/acs.inorgchem.4c03431","DOIUrl":null,"url":null,"abstract":"<p >The rising atmospheric CO<sub>2</sub> levels necessitate the development of effective materials for its mitigation. Utilization of adsorbent materials for the reversible physisorption of CO<sub>2</sub> has a significantly less impact. Recognizing this need, herein, we present a nitrogen-rich, aqua-stable, Ag(0)-nanoparticle-doped metal–organic framework (MOF) designed for the irreversible chemical conversion of CO<sub>2</sub> into valuable fine chemicals. We demonstrate two sustainable pathways for CO<sub>2</sub> fixation, utilizing the catalyst, <b>1′</b>@Ag NPs. The designed catalyst facilitates the cyclization of propargylic amines and alcohols under ambient temperature and pressure conditions. Remarkably, this is the first MOF-based catalyst that allows for quantitative conversion of propargylic amines into 2-oxazolidinones at room temperature with atmospheric CO<sub>2</sub> pressure. The process successfully transforms various propargylic amines and alcohols into 2-oxazolidinones and α-alkylidene cyclic carbonates under the CO<sub>2</sub> atmosphere. Additionally, the catalyst shows excellent recyclability, maintaining its activity and structural integrity across multiple reuse cycles. Control experiments revealed that the catalytic efficiency of <b>1′</b>@Ag NPs is attributed to the highly exposed alkynophilic Ag(0) sites on its pore walls. Computational studies further elucidate the mechanistic pathway for CO<sub>2</sub> fixation. This work highlights the potential of <b>1′</b>@Ag NPs to enhance environmental sustainability by converting CO<sub>2</sub> into valuable bioactive chemicals under mild conditions.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"63 45","pages":"21450–21461 21450–21461"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Sustainable Pathways of MOF-Catalyzed Room Temperature Chemical Fixation of CO2 inside Alkynes under Atmospheric Pressure\",\"authors\":\"Subhrajyoti Ghosh,&nbsp;Paltan Laha,&nbsp;Nazir Ud Din Mir,&nbsp;Pritam Das,&nbsp;Pil-Ryung Cha and Shyam Biswas*,&nbsp;\",\"doi\":\"10.1021/acs.inorgchem.4c0343110.1021/acs.inorgchem.4c03431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The rising atmospheric CO<sub>2</sub> levels necessitate the development of effective materials for its mitigation. Utilization of adsorbent materials for the reversible physisorption of CO<sub>2</sub> has a significantly less impact. Recognizing this need, herein, we present a nitrogen-rich, aqua-stable, Ag(0)-nanoparticle-doped metal–organic framework (MOF) designed for the irreversible chemical conversion of CO<sub>2</sub> into valuable fine chemicals. We demonstrate two sustainable pathways for CO<sub>2</sub> fixation, utilizing the catalyst, <b>1′</b>@Ag NPs. The designed catalyst facilitates the cyclization of propargylic amines and alcohols under ambient temperature and pressure conditions. Remarkably, this is the first MOF-based catalyst that allows for quantitative conversion of propargylic amines into 2-oxazolidinones at room temperature with atmospheric CO<sub>2</sub> pressure. The process successfully transforms various propargylic amines and alcohols into 2-oxazolidinones and α-alkylidene cyclic carbonates under the CO<sub>2</sub> atmosphere. Additionally, the catalyst shows excellent recyclability, maintaining its activity and structural integrity across multiple reuse cycles. Control experiments revealed that the catalytic efficiency of <b>1′</b>@Ag NPs is attributed to the highly exposed alkynophilic Ag(0) sites on its pore walls. Computational studies further elucidate the mechanistic pathway for CO<sub>2</sub> fixation. This work highlights the potential of <b>1′</b>@Ag NPs to enhance environmental sustainability by converting CO<sub>2</sub> into valuable bioactive chemicals under mild conditions.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"63 45\",\"pages\":\"21450–21461 21450–21461\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03431\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03431","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

随着大气中二氧化碳含量的不断上升,有必要开发有效的材料来缓解这一问题。利用吸附材料对二氧化碳进行可逆物理吸附的影响要小得多。有鉴于此,我们在本文中介绍了一种富氮、水稳、掺杂 Ag(0) 纳米粒子的金属有机框架 (MOF),用于将二氧化碳不可逆地化学转化为有价值的精细化学品。我们展示了利用 1′@Ag NPs 催化剂固定二氧化碳的两种可持续途径。所设计的催化剂可在常温常压条件下促进丙炔胺和醇的环化。值得注意的是,这是第一种基于 MOF 的催化剂,可在常温和大气二氧化碳压力下将丙炔胺定量转化为 2-噁唑烷酮。在二氧化碳气氛下,该工艺成功地将各种丙炔胺和醇转化为 2-恶唑烷酮和α-亚烷基环碳酸盐。此外,该催化剂还具有出色的可回收性,在多次循环使用过程中仍能保持其活性和结构完整性。对照实验表明,1′@Ag NPs 的催化效率归功于其孔壁上高度暴露的亲烷基 Ag(0) 位点。计算研究进一步阐明了二氧化碳固定的机理途径。这项工作凸显了 1′@Ag NPs 在温和条件下将二氧化碳转化为有价值的生物活性化学物质,从而提高环境可持续性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two Sustainable Pathways of MOF-Catalyzed Room Temperature Chemical Fixation of CO2 inside Alkynes under Atmospheric Pressure

Two Sustainable Pathways of MOF-Catalyzed Room Temperature Chemical Fixation of CO2 inside Alkynes under Atmospheric Pressure

The rising atmospheric CO2 levels necessitate the development of effective materials for its mitigation. Utilization of adsorbent materials for the reversible physisorption of CO2 has a significantly less impact. Recognizing this need, herein, we present a nitrogen-rich, aqua-stable, Ag(0)-nanoparticle-doped metal–organic framework (MOF) designed for the irreversible chemical conversion of CO2 into valuable fine chemicals. We demonstrate two sustainable pathways for CO2 fixation, utilizing the catalyst, 1′@Ag NPs. The designed catalyst facilitates the cyclization of propargylic amines and alcohols under ambient temperature and pressure conditions. Remarkably, this is the first MOF-based catalyst that allows for quantitative conversion of propargylic amines into 2-oxazolidinones at room temperature with atmospheric CO2 pressure. The process successfully transforms various propargylic amines and alcohols into 2-oxazolidinones and α-alkylidene cyclic carbonates under the CO2 atmosphere. Additionally, the catalyst shows excellent recyclability, maintaining its activity and structural integrity across multiple reuse cycles. Control experiments revealed that the catalytic efficiency of 1′@Ag NPs is attributed to the highly exposed alkynophilic Ag(0) sites on its pore walls. Computational studies further elucidate the mechanistic pathway for CO2 fixation. This work highlights the potential of 1′@Ag NPs to enhance environmental sustainability by converting CO2 into valuable bioactive chemicals under mild conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信