Subhrajyoti Ghosh, Paltan Laha, Nazir Ud Din Mir, Pritam Das, Pil-Ryung Cha and Shyam Biswas*,
{"title":"大气压下 MOF 催化室温化学固定炔烃中二氧化碳的两种可持续途径","authors":"Subhrajyoti Ghosh, Paltan Laha, Nazir Ud Din Mir, Pritam Das, Pil-Ryung Cha and Shyam Biswas*, ","doi":"10.1021/acs.inorgchem.4c0343110.1021/acs.inorgchem.4c03431","DOIUrl":null,"url":null,"abstract":"<p >The rising atmospheric CO<sub>2</sub> levels necessitate the development of effective materials for its mitigation. Utilization of adsorbent materials for the reversible physisorption of CO<sub>2</sub> has a significantly less impact. Recognizing this need, herein, we present a nitrogen-rich, aqua-stable, Ag(0)-nanoparticle-doped metal–organic framework (MOF) designed for the irreversible chemical conversion of CO<sub>2</sub> into valuable fine chemicals. We demonstrate two sustainable pathways for CO<sub>2</sub> fixation, utilizing the catalyst, <b>1′</b>@Ag NPs. The designed catalyst facilitates the cyclization of propargylic amines and alcohols under ambient temperature and pressure conditions. Remarkably, this is the first MOF-based catalyst that allows for quantitative conversion of propargylic amines into 2-oxazolidinones at room temperature with atmospheric CO<sub>2</sub> pressure. The process successfully transforms various propargylic amines and alcohols into 2-oxazolidinones and α-alkylidene cyclic carbonates under the CO<sub>2</sub> atmosphere. Additionally, the catalyst shows excellent recyclability, maintaining its activity and structural integrity across multiple reuse cycles. Control experiments revealed that the catalytic efficiency of <b>1′</b>@Ag NPs is attributed to the highly exposed alkynophilic Ag(0) sites on its pore walls. Computational studies further elucidate the mechanistic pathway for CO<sub>2</sub> fixation. This work highlights the potential of <b>1′</b>@Ag NPs to enhance environmental sustainability by converting CO<sub>2</sub> into valuable bioactive chemicals under mild conditions.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"63 45","pages":"21450–21461 21450–21461"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Sustainable Pathways of MOF-Catalyzed Room Temperature Chemical Fixation of CO2 inside Alkynes under Atmospheric Pressure\",\"authors\":\"Subhrajyoti Ghosh, Paltan Laha, Nazir Ud Din Mir, Pritam Das, Pil-Ryung Cha and Shyam Biswas*, \",\"doi\":\"10.1021/acs.inorgchem.4c0343110.1021/acs.inorgchem.4c03431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The rising atmospheric CO<sub>2</sub> levels necessitate the development of effective materials for its mitigation. Utilization of adsorbent materials for the reversible physisorption of CO<sub>2</sub> has a significantly less impact. Recognizing this need, herein, we present a nitrogen-rich, aqua-stable, Ag(0)-nanoparticle-doped metal–organic framework (MOF) designed for the irreversible chemical conversion of CO<sub>2</sub> into valuable fine chemicals. We demonstrate two sustainable pathways for CO<sub>2</sub> fixation, utilizing the catalyst, <b>1′</b>@Ag NPs. The designed catalyst facilitates the cyclization of propargylic amines and alcohols under ambient temperature and pressure conditions. Remarkably, this is the first MOF-based catalyst that allows for quantitative conversion of propargylic amines into 2-oxazolidinones at room temperature with atmospheric CO<sub>2</sub> pressure. The process successfully transforms various propargylic amines and alcohols into 2-oxazolidinones and α-alkylidene cyclic carbonates under the CO<sub>2</sub> atmosphere. Additionally, the catalyst shows excellent recyclability, maintaining its activity and structural integrity across multiple reuse cycles. Control experiments revealed that the catalytic efficiency of <b>1′</b>@Ag NPs is attributed to the highly exposed alkynophilic Ag(0) sites on its pore walls. Computational studies further elucidate the mechanistic pathway for CO<sub>2</sub> fixation. This work highlights the potential of <b>1′</b>@Ag NPs to enhance environmental sustainability by converting CO<sub>2</sub> into valuable bioactive chemicals under mild conditions.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"63 45\",\"pages\":\"21450–21461 21450–21461\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03431\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03431","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Two Sustainable Pathways of MOF-Catalyzed Room Temperature Chemical Fixation of CO2 inside Alkynes under Atmospheric Pressure
The rising atmospheric CO2 levels necessitate the development of effective materials for its mitigation. Utilization of adsorbent materials for the reversible physisorption of CO2 has a significantly less impact. Recognizing this need, herein, we present a nitrogen-rich, aqua-stable, Ag(0)-nanoparticle-doped metal–organic framework (MOF) designed for the irreversible chemical conversion of CO2 into valuable fine chemicals. We demonstrate two sustainable pathways for CO2 fixation, utilizing the catalyst, 1′@Ag NPs. The designed catalyst facilitates the cyclization of propargylic amines and alcohols under ambient temperature and pressure conditions. Remarkably, this is the first MOF-based catalyst that allows for quantitative conversion of propargylic amines into 2-oxazolidinones at room temperature with atmospheric CO2 pressure. The process successfully transforms various propargylic amines and alcohols into 2-oxazolidinones and α-alkylidene cyclic carbonates under the CO2 atmosphere. Additionally, the catalyst shows excellent recyclability, maintaining its activity and structural integrity across multiple reuse cycles. Control experiments revealed that the catalytic efficiency of 1′@Ag NPs is attributed to the highly exposed alkynophilic Ag(0) sites on its pore walls. Computational studies further elucidate the mechanistic pathway for CO2 fixation. This work highlights the potential of 1′@Ag NPs to enhance environmental sustainability by converting CO2 into valuable bioactive chemicals under mild conditions.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.