染料脱色过氧化物酶在牛皮纸木质素和木质纤维素基质上保持高稳定性和高周转率

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Silja Välimets, Lorenz Schwaiger, Alexandra Bennett, Daniel Maresch, Roland Ludwig, Stephan Hann, Dolores Linde, Francisco Javier Ruiz-Dueñas and Clemens Peterbauer*, 
{"title":"染料脱色过氧化物酶在牛皮纸木质素和木质纤维素基质上保持高稳定性和高周转率","authors":"Silja Välimets,&nbsp;Lorenz Schwaiger,&nbsp;Alexandra Bennett,&nbsp;Daniel Maresch,&nbsp;Roland Ludwig,&nbsp;Stephan Hann,&nbsp;Dolores Linde,&nbsp;Francisco Javier Ruiz-Dueñas and Clemens Peterbauer*,&nbsp;","doi":"10.1021/acsomega.4c0504310.1021/acsomega.4c05043","DOIUrl":null,"url":null,"abstract":"<p >Fungal enzyme systems for the degradation of plant cell wall lignin, consisting of, among others, laccases and lignin-active peroxidases, are well characterized. Additionally, fungi and bacteria contain dye-decolorizing peroxidases (DyP), which are also capable of oxidizing and modifying lignin constituents. Studying DyP activity on lignocellulose poses challenges due to the heterogeneity of the substrate and the lack of continuous kinetic methods. In this study, we report the kinetic parameters of bacterial DyP from <i>Amycolatopsis</i> 75iv2 and fungal DyP from <i>Auricularia auricula-judae</i> on insoluble plant materials and kraft lignin by monitoring the depletion of the cosubstrate of the peroxidases with a H<sub>2</sub>O<sub>2</sub> sensor. In the reactions with spruce, both enzymes showed similar kinetics. On kraft lignin, the catalytic rate of bacterial DyP reached 30 ± 2 s<sup>–1</sup>, whereas fungal DyP was nearly 3 times more active (81 ± 7 s<sup>–1</sup>). Importantly, the real-time measurement of H<sub>2</sub>O<sub>2</sub> allowed the assessment of continuous activity for both enzymes, revealing a previously unreported exceptionally high stability under turnover conditions. Bacterial DyP performed 24,000 turnovers of H<sub>2</sub>O<sub>2</sub>, whereas the fungal DyP achieved 94,000 H<sub>2</sub>O<sub>2</sub> turnovers in 1 h with a remaining activity of 40 and 80%, respectively. Using mass spectrometry, the depletion of the cosubstrate H<sub>2</sub>O<sub>2</sub> was shown to correlate with product formation, validating the amperometric method.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05043","citationCount":"0","resultStr":"{\"title\":\"Dye-Decolorizing Peroxidases Maintain High Stability and Turnover on Kraft Lignin and Lignocellulose Substrates\",\"authors\":\"Silja Välimets,&nbsp;Lorenz Schwaiger,&nbsp;Alexandra Bennett,&nbsp;Daniel Maresch,&nbsp;Roland Ludwig,&nbsp;Stephan Hann,&nbsp;Dolores Linde,&nbsp;Francisco Javier Ruiz-Dueñas and Clemens Peterbauer*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0504310.1021/acsomega.4c05043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Fungal enzyme systems for the degradation of plant cell wall lignin, consisting of, among others, laccases and lignin-active peroxidases, are well characterized. Additionally, fungi and bacteria contain dye-decolorizing peroxidases (DyP), which are also capable of oxidizing and modifying lignin constituents. Studying DyP activity on lignocellulose poses challenges due to the heterogeneity of the substrate and the lack of continuous kinetic methods. In this study, we report the kinetic parameters of bacterial DyP from <i>Amycolatopsis</i> 75iv2 and fungal DyP from <i>Auricularia auricula-judae</i> on insoluble plant materials and kraft lignin by monitoring the depletion of the cosubstrate of the peroxidases with a H<sub>2</sub>O<sub>2</sub> sensor. In the reactions with spruce, both enzymes showed similar kinetics. On kraft lignin, the catalytic rate of bacterial DyP reached 30 ± 2 s<sup>–1</sup>, whereas fungal DyP was nearly 3 times more active (81 ± 7 s<sup>–1</sup>). Importantly, the real-time measurement of H<sub>2</sub>O<sub>2</sub> allowed the assessment of continuous activity for both enzymes, revealing a previously unreported exceptionally high stability under turnover conditions. Bacterial DyP performed 24,000 turnovers of H<sub>2</sub>O<sub>2</sub>, whereas the fungal DyP achieved 94,000 H<sub>2</sub>O<sub>2</sub> turnovers in 1 h with a remaining activity of 40 and 80%, respectively. Using mass spectrometry, the depletion of the cosubstrate H<sub>2</sub>O<sub>2</sub> was shown to correlate with product formation, validating the amperometric method.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c05043\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c05043","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

真菌降解植物细胞壁木质素的酶系统包括木质素酶和木质素活性过氧化物酶等,这些酶系统都有很好的特性。此外,真菌和细菌还含有染料脱色过氧化物酶(DyP),它们也能氧化和改变木质素成分。由于底物的异质性和缺乏连续的动力学方法,研究木质纤维素上的 DyP 活性是一项挑战。在本研究中,我们报告了来自 Amycolatopsis 75iv2 的细菌 DyP 和来自 Auricularia auricula-judae 的真菌 DyP 在不溶植物材料和牛皮纸木质素上的动力学参数,方法是用 H2O2 传感器监测过氧化物酶共底物的耗竭情况。在与云杉的反应中,两种酶表现出相似的动力学。在牛皮纸木质素上,细菌 DyP 的催化速率为 30 ± 2 s-1,而真菌 DyP 的活性则高出近 3 倍(81 ± 7 s-1)。重要的是,通过对 H2O2 的实时测量,可以评估两种酶的持续活性,从而发现在周转条件下具有以前未报道过的极高稳定性。细菌 DyP 对 H2O2 进行了 24,000 次翻转,而真菌 DyP 在 1 小时内实现了 94,000 次 H2O2 翻转,剩余活性分别为 40% 和 80%。质谱分析表明,共底物 H2O2 的耗竭与产物的形成相关,从而验证了安培法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dye-Decolorizing Peroxidases Maintain High Stability and Turnover on Kraft Lignin and Lignocellulose Substrates

Fungal enzyme systems for the degradation of plant cell wall lignin, consisting of, among others, laccases and lignin-active peroxidases, are well characterized. Additionally, fungi and bacteria contain dye-decolorizing peroxidases (DyP), which are also capable of oxidizing and modifying lignin constituents. Studying DyP activity on lignocellulose poses challenges due to the heterogeneity of the substrate and the lack of continuous kinetic methods. In this study, we report the kinetic parameters of bacterial DyP from Amycolatopsis 75iv2 and fungal DyP from Auricularia auricula-judae on insoluble plant materials and kraft lignin by monitoring the depletion of the cosubstrate of the peroxidases with a H2O2 sensor. In the reactions with spruce, both enzymes showed similar kinetics. On kraft lignin, the catalytic rate of bacterial DyP reached 30 ± 2 s–1, whereas fungal DyP was nearly 3 times more active (81 ± 7 s–1). Importantly, the real-time measurement of H2O2 allowed the assessment of continuous activity for both enzymes, revealing a previously unreported exceptionally high stability under turnover conditions. Bacterial DyP performed 24,000 turnovers of H2O2, whereas the fungal DyP achieved 94,000 H2O2 turnovers in 1 h with a remaining activity of 40 and 80%, respectively. Using mass spectrometry, the depletion of the cosubstrate H2O2 was shown to correlate with product formation, validating the amperometric method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信