MVGNet:利用多任务学习和多视图框架预测 PI3K 抑制剂

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yanlei Kang, Qiwei Xia, Yunliang Jiang and Zhong Li*, 
{"title":"MVGNet:利用多任务学习和多视图框架预测 PI3K 抑制剂","authors":"Yanlei Kang,&nbsp;Qiwei Xia,&nbsp;Yunliang Jiang and Zhong Li*,&nbsp;","doi":"10.1021/acsomega.4c0622410.1021/acsomega.4c06224","DOIUrl":null,"url":null,"abstract":"<p >PI3K (phosphatidylinositol 3-kinase) is an intracellular phosphatidylinositol kinase composed of a regulatory subunit, p85, and a catalytic subunit, p110. Based on the different structures of the p110 catalytic subunit, PI3K can be divided into four isoforms: PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ. As molecularly targeted drugs, PI3K inhibitors have demonstrated antiproliferative effects on tumor cells and can also induce cancer cell death. In this study, a multiview deep learning framework (MVGNet) is proposed, which integrates fragment-based pharmacophore information and utilizes multitask learning to capture correlation information between subtasks. This framework predicts the inhibitory activity of molecules against the four PI3K isoforms (PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ). Compared to baseline prediction models based on three traditional machine learning methods (RF, SVM, and XGBoost) and four deep learning algorithms (GAT, D-MPNN, CMPNN, and KANO), our model demonstrates superior performance. The evaluation results show that our model achieves the highest average AUC-ROC and AUC-PR values on the test set, which are 0.927 ± 0.006 and 0.980 ± 0.002, respectively. This study provides a reference for exploring the structure–activity relationship of PI3K inhibitors.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c06224","citationCount":"0","resultStr":"{\"title\":\"MVGNet: Prediction of PI3K Inhibitors Using Multitask Learning and Multiview Frameworks\",\"authors\":\"Yanlei Kang,&nbsp;Qiwei Xia,&nbsp;Yunliang Jiang and Zhong Li*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0622410.1021/acsomega.4c06224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >PI3K (phosphatidylinositol 3-kinase) is an intracellular phosphatidylinositol kinase composed of a regulatory subunit, p85, and a catalytic subunit, p110. Based on the different structures of the p110 catalytic subunit, PI3K can be divided into four isoforms: PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ. As molecularly targeted drugs, PI3K inhibitors have demonstrated antiproliferative effects on tumor cells and can also induce cancer cell death. In this study, a multiview deep learning framework (MVGNet) is proposed, which integrates fragment-based pharmacophore information and utilizes multitask learning to capture correlation information between subtasks. This framework predicts the inhibitory activity of molecules against the four PI3K isoforms (PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ). Compared to baseline prediction models based on three traditional machine learning methods (RF, SVM, and XGBoost) and four deep learning algorithms (GAT, D-MPNN, CMPNN, and KANO), our model demonstrates superior performance. The evaluation results show that our model achieves the highest average AUC-ROC and AUC-PR values on the test set, which are 0.927 ± 0.006 and 0.980 ± 0.002, respectively. This study provides a reference for exploring the structure–activity relationship of PI3K inhibitors.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c06224\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c06224\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c06224","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

PI3K(磷脂酰肌醇 3-激酶)是一种细胞内磷脂酰肌醇激酶,由调节亚基 p85 和催化亚基 p110 组成。根据 p110 催化亚基的不同结构,PI3K 可分为四种同工酶:PI3Kα、PI3Kβ、PI3Kγ和PI3Kδ。作为分子靶向药物,PI3K 抑制剂对肿瘤细胞具有抗增殖作用,还能诱导癌细胞死亡。本研究提出了一种多视角深度学习框架(MVGNet),它整合了基于片段的药效信息,并利用多任务学习捕捉子任务之间的相关信息。该框架可预测分子对四种 PI3K 同工酶(PI3Kα、PI3Kβ、PI3Kγ 和 PI3Kδ)的抑制活性。与基于三种传统机器学习方法(RF、SVM 和 XGBoost)和四种深度学习算法(GAT、D-MPNN、CMPNN 和 KANO)的基线预测模型相比,我们的模型表现出更优越的性能。评估结果表明,我们的模型在测试集上实现了最高的平均 AUC-ROC 值和 AUC-PR 值,分别为 0.927 ± 0.006 和 0.980 ± 0.002。这项研究为探索 PI3K 抑制剂的结构-活性关系提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MVGNet: Prediction of PI3K Inhibitors Using Multitask Learning and Multiview Frameworks

PI3K (phosphatidylinositol 3-kinase) is an intracellular phosphatidylinositol kinase composed of a regulatory subunit, p85, and a catalytic subunit, p110. Based on the different structures of the p110 catalytic subunit, PI3K can be divided into four isoforms: PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ. As molecularly targeted drugs, PI3K inhibitors have demonstrated antiproliferative effects on tumor cells and can also induce cancer cell death. In this study, a multiview deep learning framework (MVGNet) is proposed, which integrates fragment-based pharmacophore information and utilizes multitask learning to capture correlation information between subtasks. This framework predicts the inhibitory activity of molecules against the four PI3K isoforms (PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ). Compared to baseline prediction models based on three traditional machine learning methods (RF, SVM, and XGBoost) and four deep learning algorithms (GAT, D-MPNN, CMPNN, and KANO), our model demonstrates superior performance. The evaluation results show that our model achieves the highest average AUC-ROC and AUC-PR values on the test set, which are 0.927 ± 0.006 and 0.980 ± 0.002, respectively. This study provides a reference for exploring the structure–activity relationship of PI3K inhibitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信