Elisa Grépin, Yue Zhou, Biao Li, Gwenaëlle Rousse, Jean-Marie Tarascon and Sathiya Mariyappan*,
{"title":"Na 离子电池层状氧化物阴极中的最佳钛替代物","authors":"Elisa Grépin, Yue Zhou, Biao Li, Gwenaëlle Rousse, Jean-Marie Tarascon and Sathiya Mariyappan*, ","doi":"10.1021/acs.chemmater.4c0250110.1021/acs.chemmater.4c02501","DOIUrl":null,"url":null,"abstract":"<p >Sodium layered oxides Na<sub><i>x</i></sub>MO<sub>2</sub> (<i>x</i> ≤ 1 and M = transition metal ions) gain interest as sodium-ion battery (NIB) cathodes due to their high energy density and cost-effectiveness. The nature of transition metal ions (M) defines the material properties, and the substitution of M with redox inactive Ti<sup>4+</sup> is often seen as beneficial in reducing phase transitions during cycling and thus improving the cycle life. In this respect, our present study focuses on understanding the origin of this improvement by studying the highly substituted P2 Na<sub>0.67</sub>Ni<sub>0.30</sub>Zn<sub>0.03</sub>Mn<sub>0.67–<i>y</i></sub>Ti<sub><i>y</i></sub>O<sub>2</sub> (0 ≤ <i>y</i> ≤ 0.67) phases based on their electrochemical performance combined with structural analyses and DFT calculations. The results indicate that Ti<sup>4+</sup>, by increasing the M–O bond ionicity, disrupts the Na<sup>+</sup>-vacancy ordering at lower voltages (<4 V, until ∼60% SOC) and reduces the participation of O 2<i>p</i> in the redox process, thereby suppressing Na-removal and the extent of P2–O2 phase transition at high voltages. We show that this effect becomes maximum for <i>y</i> = 0.52 (P2 Na<sub>0.67</sub>Ni<sub>0.30</sub>Zn<sub>0.03</sub>Mn<sub>0.15</sub>Ti<sub>0.52</sub>O<sub>2</sub>) and beyond, for which we observe a nearly solid-solution-like behavior of the P2-type structure. However, the d<sup>0</sup> Ti<sup>4+</sup> is prone to cation migration leading to poor structural reversibility as observed from operando XRD analyses, making the highly Ti<sup>4+</sup>-substituted material less suitable for practical applications. An optimum ratio of <i>y</i> = 0.3 (Na<sub>0.67</sub>Ni<sub>0.3</sub>Zn<sub>0.03</sub>Mn<sub>0.37</sub>Ti<sub>0.3</sub>O<sub>2</sub>) is beneficial for the cycle life as well as rate capability, and the study points to the importance of carefully selecting transition metal combinations in the finest ratio to achieve the best performing sodium layered oxide electrode materials.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Ti-Substitution in Layered Oxide Cathodes for Na-Ion Batteries\",\"authors\":\"Elisa Grépin, Yue Zhou, Biao Li, Gwenaëlle Rousse, Jean-Marie Tarascon and Sathiya Mariyappan*, \",\"doi\":\"10.1021/acs.chemmater.4c0250110.1021/acs.chemmater.4c02501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sodium layered oxides Na<sub><i>x</i></sub>MO<sub>2</sub> (<i>x</i> ≤ 1 and M = transition metal ions) gain interest as sodium-ion battery (NIB) cathodes due to their high energy density and cost-effectiveness. The nature of transition metal ions (M) defines the material properties, and the substitution of M with redox inactive Ti<sup>4+</sup> is often seen as beneficial in reducing phase transitions during cycling and thus improving the cycle life. In this respect, our present study focuses on understanding the origin of this improvement by studying the highly substituted P2 Na<sub>0.67</sub>Ni<sub>0.30</sub>Zn<sub>0.03</sub>Mn<sub>0.67–<i>y</i></sub>Ti<sub><i>y</i></sub>O<sub>2</sub> (0 ≤ <i>y</i> ≤ 0.67) phases based on their electrochemical performance combined with structural analyses and DFT calculations. The results indicate that Ti<sup>4+</sup>, by increasing the M–O bond ionicity, disrupts the Na<sup>+</sup>-vacancy ordering at lower voltages (<4 V, until ∼60% SOC) and reduces the participation of O 2<i>p</i> in the redox process, thereby suppressing Na-removal and the extent of P2–O2 phase transition at high voltages. We show that this effect becomes maximum for <i>y</i> = 0.52 (P2 Na<sub>0.67</sub>Ni<sub>0.30</sub>Zn<sub>0.03</sub>Mn<sub>0.15</sub>Ti<sub>0.52</sub>O<sub>2</sub>) and beyond, for which we observe a nearly solid-solution-like behavior of the P2-type structure. However, the d<sup>0</sup> Ti<sup>4+</sup> is prone to cation migration leading to poor structural reversibility as observed from operando XRD analyses, making the highly Ti<sup>4+</sup>-substituted material less suitable for practical applications. An optimum ratio of <i>y</i> = 0.3 (Na<sub>0.67</sub>Ni<sub>0.3</sub>Zn<sub>0.03</sub>Mn<sub>0.37</sub>Ti<sub>0.3</sub>O<sub>2</sub>) is beneficial for the cycle life as well as rate capability, and the study points to the importance of carefully selecting transition metal combinations in the finest ratio to achieve the best performing sodium layered oxide electrode materials.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02501\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02501","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
钠层状氧化物 NaxMO2(x ≤ 1,M = 过渡金属离子)作为钠离子电池(NIB)阴极,因其高能量密度和成本效益而备受关注。过渡金属离子(M)的性质决定了材料的特性,用氧化还原不活跃的 Ti4+ 替代 M 通常被认为有利于减少循环过程中的相变,从而提高循环寿命。在这方面,我们本研究的重点是通过研究高度取代的 P2 Na0.67Ni0.30Zn0.03Mn0.67-yTiyO2(0 ≤ y ≤ 0.67)相,根据其电化学性能,结合结构分析和 DFT 计算,了解这种改善的原因。结果表明,Ti4+ 通过增加 M-O 键的离子性,在较低电压下(4 V,直到 ∼ 60% SOC)破坏了 Na+ 空位有序性,并减少了 O 2p 在氧化还原过程中的参与,从而抑制了高电压下的 Na 清除和 P2-O2 相转变的程度。我们发现,在 y = 0.52(P2 Na0.67Ni0.30Zn0.03Mn0.15Ti0.52O2)及以上时,这种效应达到最大,我们观察到 P2 型结构的行为几乎类似于固溶体。然而,从操作XRD分析中观察到,d0 Ti4+容易发生阳离子迁移,导致结构可逆性较差,因此高Ti4+取代的材料不太适合实际应用。y = 0.3 的最佳比率(Na0.67Ni0.3Zn0.03Mn0.37Ti0.3O2)有利于提高循环寿命和速率能力。
Optimal Ti-Substitution in Layered Oxide Cathodes for Na-Ion Batteries
Sodium layered oxides NaxMO2 (x ≤ 1 and M = transition metal ions) gain interest as sodium-ion battery (NIB) cathodes due to their high energy density and cost-effectiveness. The nature of transition metal ions (M) defines the material properties, and the substitution of M with redox inactive Ti4+ is often seen as beneficial in reducing phase transitions during cycling and thus improving the cycle life. In this respect, our present study focuses on understanding the origin of this improvement by studying the highly substituted P2 Na0.67Ni0.30Zn0.03Mn0.67–yTiyO2 (0 ≤ y ≤ 0.67) phases based on their electrochemical performance combined with structural analyses and DFT calculations. The results indicate that Ti4+, by increasing the M–O bond ionicity, disrupts the Na+-vacancy ordering at lower voltages (<4 V, until ∼60% SOC) and reduces the participation of O 2p in the redox process, thereby suppressing Na-removal and the extent of P2–O2 phase transition at high voltages. We show that this effect becomes maximum for y = 0.52 (P2 Na0.67Ni0.30Zn0.03Mn0.15Ti0.52O2) and beyond, for which we observe a nearly solid-solution-like behavior of the P2-type structure. However, the d0 Ti4+ is prone to cation migration leading to poor structural reversibility as observed from operando XRD analyses, making the highly Ti4+-substituted material less suitable for practical applications. An optimum ratio of y = 0.3 (Na0.67Ni0.3Zn0.03Mn0.37Ti0.3O2) is beneficial for the cycle life as well as rate capability, and the study points to the importance of carefully selecting transition metal combinations in the finest ratio to achieve the best performing sodium layered oxide electrode materials.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.