适用于电化学的高熵氧化物的合成方法

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sienna N. Gonzalez, Claire McFadden Block, Ryan P. O’Hayre and Ryan M. Richards*, 
{"title":"适用于电化学的高熵氧化物的合成方法","authors":"Sienna N. Gonzalez,&nbsp;Claire McFadden Block,&nbsp;Ryan P. O’Hayre and Ryan M. Richards*,&nbsp;","doi":"10.1021/acs.langmuir.4c0229910.1021/acs.langmuir.4c02299","DOIUrl":null,"url":null,"abstract":"<p >As field-dispatchable power sources offer an alternative means of energy conversion, electrocatalyst development has become an area of intense focus. Emphasis has been placed on the transition from expensive electrocatalysts such as platinum and palladium toward earth abundant materials. Such a shift would result in lowered costs, enhanced durability, and an increased potential for implementation on a broader scale. High entropy oxides (HEOs) are an emerging class of materials that can offer both earth abundance and tunability of composition and morphology, making them excellent candidates for electrocatalysis. Several approaches have been taken to synthesize these materials and achieve balance between single-phase, highly crystalline products and high-surface area, nanostructured products. This work offers a survey of these methods, as well as our perspective on the most promising pathways forward. Emphasis is placed on clarifying the benefits, challenges, and overall suitability of each means of synthesis with electrocatalytic applications in mind.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 45","pages":"23573–23582 23573–23582"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis Methods for Electrochemically Applicable High Entropy Oxides\",\"authors\":\"Sienna N. Gonzalez,&nbsp;Claire McFadden Block,&nbsp;Ryan P. O’Hayre and Ryan M. Richards*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.4c0229910.1021/acs.langmuir.4c02299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As field-dispatchable power sources offer an alternative means of energy conversion, electrocatalyst development has become an area of intense focus. Emphasis has been placed on the transition from expensive electrocatalysts such as platinum and palladium toward earth abundant materials. Such a shift would result in lowered costs, enhanced durability, and an increased potential for implementation on a broader scale. High entropy oxides (HEOs) are an emerging class of materials that can offer both earth abundance and tunability of composition and morphology, making them excellent candidates for electrocatalysis. Several approaches have been taken to synthesize these materials and achieve balance between single-phase, highly crystalline products and high-surface area, nanostructured products. This work offers a survey of these methods, as well as our perspective on the most promising pathways forward. Emphasis is placed on clarifying the benefits, challenges, and overall suitability of each means of synthesis with electrocatalytic applications in mind.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"40 45\",\"pages\":\"23573–23582 23573–23582\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c02299\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c02299","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于可现场调度的电源提供了另一种能源转换方式,电催化剂的开发已成为一个备受关注的领域。重点已经从昂贵的电催化剂(如铂和钯)过渡到地球资源丰富的材料。这种转变将降低成本,提高耐用性,并增加在更大范围内应用的可能性。高熵氧化物(HEOs)是一类新兴的材料,既能提供丰富的地球资源,又能调整成分和形态,是电催化的绝佳候选材料。目前已有多种方法合成这些材料,并在单相高结晶产品和高表面积纳米结构产品之间实现平衡。本研究对这些方法进行了调查,并提出了我们对未来最有前途的途径的看法。重点在于阐明每种合成方法的优势、挑战和整体适用性,并考虑到电催化应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis Methods for Electrochemically Applicable High Entropy Oxides

Synthesis Methods for Electrochemically Applicable High Entropy Oxides

As field-dispatchable power sources offer an alternative means of energy conversion, electrocatalyst development has become an area of intense focus. Emphasis has been placed on the transition from expensive electrocatalysts such as platinum and palladium toward earth abundant materials. Such a shift would result in lowered costs, enhanced durability, and an increased potential for implementation on a broader scale. High entropy oxides (HEOs) are an emerging class of materials that can offer both earth abundance and tunability of composition and morphology, making them excellent candidates for electrocatalysis. Several approaches have been taken to synthesize these materials and achieve balance between single-phase, highly crystalline products and high-surface area, nanostructured products. This work offers a survey of these methods, as well as our perspective on the most promising pathways forward. Emphasis is placed on clarifying the benefits, challenges, and overall suitability of each means of synthesis with electrocatalytic applications in mind.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信