Guang Yang*, Katie Browning, Harry M Meyer III, Yuanshun Li, Nathan R. Neale, Gabriel M. Veith and Jagjit Nanda*,
{"title":"利用先进的双盐甘氨酸电解质缓解硅-NMC 电池的日历老化","authors":"Guang Yang*, Katie Browning, Harry M Meyer III, Yuanshun Li, Nathan R. Neale, Gabriel M. Veith and Jagjit Nanda*, ","doi":"10.1021/acs.chemmater.4c0097110.1021/acs.chemmater.4c00971","DOIUrl":null,"url":null,"abstract":"<p >In addressing the critical challenge of calendar aging in silicon (Si)-based lithium-ion batteries, this study introduces a groundbreaking strategy utilizing glyme-type dual-salt electrolytes (lithium bis(trifluoromethanesulfonyl)imide [LiTFSI] and lithium difluoro(oxalato)borate [LiDFOB]). These electrolytes are demonstrated to significantly mitigate parasitic reactions and capacity loss in Si-NMC (lithium nickel manganese cobalt oxide) full cells, especially when compared with traditional carbonate-based electrolytes. Our exhaustive mechanistic analysis reveals that such electrolytes not only preserve the integrity of the Si anode but also improve the cathode/electrolyte interphases (CEI) through the formation of a conformal coating on the high-voltage cathode surface. This dual-salt approach, enhanced by the addition of a phosphate additive, effectively decelerates calendar aging, marking a substantial advance in the quest for durable and reliable Si-based energy storage technologies. The findings underscore the vital role of electrolyte composition in extending the calendar life of Si batteries, offering an alternative avenue toward maximizing the performance and longevity of next-generation Li–Si batteries.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Calendar Aging in Si-NMC Batteries with Advanced Dual-Salt Glyme Electrolytes\",\"authors\":\"Guang Yang*, Katie Browning, Harry M Meyer III, Yuanshun Li, Nathan R. Neale, Gabriel M. Veith and Jagjit Nanda*, \",\"doi\":\"10.1021/acs.chemmater.4c0097110.1021/acs.chemmater.4c00971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In addressing the critical challenge of calendar aging in silicon (Si)-based lithium-ion batteries, this study introduces a groundbreaking strategy utilizing glyme-type dual-salt electrolytes (lithium bis(trifluoromethanesulfonyl)imide [LiTFSI] and lithium difluoro(oxalato)borate [LiDFOB]). These electrolytes are demonstrated to significantly mitigate parasitic reactions and capacity loss in Si-NMC (lithium nickel manganese cobalt oxide) full cells, especially when compared with traditional carbonate-based electrolytes. Our exhaustive mechanistic analysis reveals that such electrolytes not only preserve the integrity of the Si anode but also improve the cathode/electrolyte interphases (CEI) through the formation of a conformal coating on the high-voltage cathode surface. This dual-salt approach, enhanced by the addition of a phosphate additive, effectively decelerates calendar aging, marking a substantial advance in the quest for durable and reliable Si-based energy storage technologies. The findings underscore the vital role of electrolyte composition in extending the calendar life of Si batteries, offering an alternative avenue toward maximizing the performance and longevity of next-generation Li–Si batteries.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00971\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00971","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mitigating Calendar Aging in Si-NMC Batteries with Advanced Dual-Salt Glyme Electrolytes
In addressing the critical challenge of calendar aging in silicon (Si)-based lithium-ion batteries, this study introduces a groundbreaking strategy utilizing glyme-type dual-salt electrolytes (lithium bis(trifluoromethanesulfonyl)imide [LiTFSI] and lithium difluoro(oxalato)borate [LiDFOB]). These electrolytes are demonstrated to significantly mitigate parasitic reactions and capacity loss in Si-NMC (lithium nickel manganese cobalt oxide) full cells, especially when compared with traditional carbonate-based electrolytes. Our exhaustive mechanistic analysis reveals that such electrolytes not only preserve the integrity of the Si anode but also improve the cathode/electrolyte interphases (CEI) through the formation of a conformal coating on the high-voltage cathode surface. This dual-salt approach, enhanced by the addition of a phosphate additive, effectively decelerates calendar aging, marking a substantial advance in the quest for durable and reliable Si-based energy storage technologies. The findings underscore the vital role of electrolyte composition in extending the calendar life of Si batteries, offering an alternative avenue toward maximizing the performance and longevity of next-generation Li–Si batteries.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.