{"title":"作为肉桂醛选择性氢化催化剂的核/壳金属氧化物@MIL-53(Al)纳米颗粒","authors":"Wenjing Li, Weichen Wang, Mingyue Zhu, Peiao Cong, Daowei Gao, Rongyao Wang* and Guozhu Chen*, ","doi":"10.1021/acsanm.4c0471410.1021/acsanm.4c04714","DOIUrl":null,"url":null,"abstract":"<p >Metal oxides@metal–organic framework (MOFs)-based core/shell nanostructures demonstrate promising potential in catalytic hydrogenations. However, the direct nucleation and growth of MOFs on the topologically diverse surfaces of metal oxides face significant challenges due to the high interfacial energy resulting from topological mismatches. Herein, we present a facile <i>in situ</i> growth strategy for directly assembling an MIL-53(Al) layer on the surface of CeO<sub>2</sub> nanospheres at low temperatures by mixing and stirring CeO<sub>2</sub> nanospheres and MIL-53(Al) precursors without requiring sacrificial templates or additional surface modifications. Moreover, key factors such as reaction time, temperature, and the types of aluminum salts and ligands are systematically explored to comprehensively understand the nucleation behavior of MOFs shells. Notably, when active Pt nanoparticles are sandwiched between the CeO<sub>2</sub> core and the MIL-53(Al) shell, the MIL-53(Al) effectively stabilizes the Pt nanoparticles and enhances the selectivity of hydrocinnamaldehyde in cinnamaldehyde hydrogenation. CeO<sub>2</sub>/Pt@MIL-53(Al) achieved more than twice the selectivity for HCAL compared to CeO<sub>2</sub>/Pt and even outperformed Pt/MIL-53(Al). Undoubtedly, this study provides distinctive insights into the nucleation and growth mechanisms of MOFs on metal oxides, expands the strategies for fabricating metal oxides@MOFs core/shell nanostructure, and proposes innovative ideas and possibilities for broadening the application domains of MOFs-based materials.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core/Shell Metal Oxides@MIL-53(Al) Nanoparticles as Catalyst for the Selective Hydrogenation of Cinnamaldehyde\",\"authors\":\"Wenjing Li, Weichen Wang, Mingyue Zhu, Peiao Cong, Daowei Gao, Rongyao Wang* and Guozhu Chen*, \",\"doi\":\"10.1021/acsanm.4c0471410.1021/acsanm.4c04714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal oxides@metal–organic framework (MOFs)-based core/shell nanostructures demonstrate promising potential in catalytic hydrogenations. However, the direct nucleation and growth of MOFs on the topologically diverse surfaces of metal oxides face significant challenges due to the high interfacial energy resulting from topological mismatches. Herein, we present a facile <i>in situ</i> growth strategy for directly assembling an MIL-53(Al) layer on the surface of CeO<sub>2</sub> nanospheres at low temperatures by mixing and stirring CeO<sub>2</sub> nanospheres and MIL-53(Al) precursors without requiring sacrificial templates or additional surface modifications. Moreover, key factors such as reaction time, temperature, and the types of aluminum salts and ligands are systematically explored to comprehensively understand the nucleation behavior of MOFs shells. Notably, when active Pt nanoparticles are sandwiched between the CeO<sub>2</sub> core and the MIL-53(Al) shell, the MIL-53(Al) effectively stabilizes the Pt nanoparticles and enhances the selectivity of hydrocinnamaldehyde in cinnamaldehyde hydrogenation. CeO<sub>2</sub>/Pt@MIL-53(Al) achieved more than twice the selectivity for HCAL compared to CeO<sub>2</sub>/Pt and even outperformed Pt/MIL-53(Al). Undoubtedly, this study provides distinctive insights into the nucleation and growth mechanisms of MOFs on metal oxides, expands the strategies for fabricating metal oxides@MOFs core/shell nanostructure, and proposes innovative ideas and possibilities for broadening the application domains of MOFs-based materials.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c04714\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04714","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Core/Shell Metal Oxides@MIL-53(Al) Nanoparticles as Catalyst for the Selective Hydrogenation of Cinnamaldehyde
Metal oxides@metal–organic framework (MOFs)-based core/shell nanostructures demonstrate promising potential in catalytic hydrogenations. However, the direct nucleation and growth of MOFs on the topologically diverse surfaces of metal oxides face significant challenges due to the high interfacial energy resulting from topological mismatches. Herein, we present a facile in situ growth strategy for directly assembling an MIL-53(Al) layer on the surface of CeO2 nanospheres at low temperatures by mixing and stirring CeO2 nanospheres and MIL-53(Al) precursors without requiring sacrificial templates or additional surface modifications. Moreover, key factors such as reaction time, temperature, and the types of aluminum salts and ligands are systematically explored to comprehensively understand the nucleation behavior of MOFs shells. Notably, when active Pt nanoparticles are sandwiched between the CeO2 core and the MIL-53(Al) shell, the MIL-53(Al) effectively stabilizes the Pt nanoparticles and enhances the selectivity of hydrocinnamaldehyde in cinnamaldehyde hydrogenation. CeO2/Pt@MIL-53(Al) achieved more than twice the selectivity for HCAL compared to CeO2/Pt and even outperformed Pt/MIL-53(Al). Undoubtedly, this study provides distinctive insights into the nucleation and growth mechanisms of MOFs on metal oxides, expands the strategies for fabricating metal oxides@MOFs core/shell nanostructure, and proposes innovative ideas and possibilities for broadening the application domains of MOFs-based materials.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.