Yiyang Li, Jianlan Ye, Vipin Agrawal and Jay Oswald*,
{"title":"结晶茎的热激活松弛与聚乙烯结晶/非晶界面分子拓扑的关系","authors":"Yiyang Li, Jianlan Ye, Vipin Agrawal and Jay Oswald*, ","doi":"10.1021/acs.jctc.4c0040010.1021/acs.jctc.4c00400","DOIUrl":null,"url":null,"abstract":"<p >We investigate the relaxation dynamics of crystalline stems in relation to the molecular topology of the crystalline/amorphous interface, employing coarse–grained molecular dynamics. To efficiently generate model semicrystalline systems of linear polyethylene with a realistic interphase morphology, we simplified the Monte Carlo method by introducing molecular dynamics for faster relaxation. The structural properties of the generated systems are validated against experimental measurements, theoretical predictions, and existing simulation data. The models suggest that the probability distribution of loop-entry sites on the lamellar surface can be described by a power law in terms of the distance between the entry sites. By considering realistic interphase morphology, we are able to improve the prediction of the overall activation energy for the relaxation of crystalline stems, aligning it closely with experimental measurements. The largest model predicts that crystalline stems connected via large loops, i.e., those that exceed the entanglement length, and long tails are associated with increased activation energy; whereas stems connected to shorter tails show the lowest activation energy. These predictions can guide the future development of tougher semicrystalline polymers by providing insights into how amorphous chain morphology contributes to the activation energy and the relaxation dynamics of crystalline chains.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dependence of Thermally Activated Relaxation of Crystalline Stems on the Molecular Topology at Crystalline/Amorphous Interfaces in Polyethylene\",\"authors\":\"Yiyang Li, Jianlan Ye, Vipin Agrawal and Jay Oswald*, \",\"doi\":\"10.1021/acs.jctc.4c0040010.1021/acs.jctc.4c00400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We investigate the relaxation dynamics of crystalline stems in relation to the molecular topology of the crystalline/amorphous interface, employing coarse–grained molecular dynamics. To efficiently generate model semicrystalline systems of linear polyethylene with a realistic interphase morphology, we simplified the Monte Carlo method by introducing molecular dynamics for faster relaxation. The structural properties of the generated systems are validated against experimental measurements, theoretical predictions, and existing simulation data. The models suggest that the probability distribution of loop-entry sites on the lamellar surface can be described by a power law in terms of the distance between the entry sites. By considering realistic interphase morphology, we are able to improve the prediction of the overall activation energy for the relaxation of crystalline stems, aligning it closely with experimental measurements. The largest model predicts that crystalline stems connected via large loops, i.e., those that exceed the entanglement length, and long tails are associated with increased activation energy; whereas stems connected to shorter tails show the lowest activation energy. These predictions can guide the future development of tougher semicrystalline polymers by providing insights into how amorphous chain morphology contributes to the activation energy and the relaxation dynamics of crystalline chains.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jctc.4c00400\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c00400","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dependence of Thermally Activated Relaxation of Crystalline Stems on the Molecular Topology at Crystalline/Amorphous Interfaces in Polyethylene
We investigate the relaxation dynamics of crystalline stems in relation to the molecular topology of the crystalline/amorphous interface, employing coarse–grained molecular dynamics. To efficiently generate model semicrystalline systems of linear polyethylene with a realistic interphase morphology, we simplified the Monte Carlo method by introducing molecular dynamics for faster relaxation. The structural properties of the generated systems are validated against experimental measurements, theoretical predictions, and existing simulation data. The models suggest that the probability distribution of loop-entry sites on the lamellar surface can be described by a power law in terms of the distance between the entry sites. By considering realistic interphase morphology, we are able to improve the prediction of the overall activation energy for the relaxation of crystalline stems, aligning it closely with experimental measurements. The largest model predicts that crystalline stems connected via large loops, i.e., those that exceed the entanglement length, and long tails are associated with increased activation energy; whereas stems connected to shorter tails show the lowest activation energy. These predictions can guide the future development of tougher semicrystalline polymers by providing insights into how amorphous chain morphology contributes to the activation energy and the relaxation dynamics of crystalline chains.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.