掺硫氮化碳的可控酸活化可提高光催化靛红降解性能

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Serge Arnold Benedoue, Julius Nsami Ndi, Min Ge, Zhihong Tian, Christian Brice Dantio Nguela, Haijian Tong, Anna Lo Presti, Markus Antonietti, Horace Manga Ngomo and Christian Mark Pelicano*, 
{"title":"掺硫氮化碳的可控酸活化可提高光催化靛红降解性能","authors":"Serge Arnold Benedoue,&nbsp;Julius Nsami Ndi,&nbsp;Min Ge,&nbsp;Zhihong Tian,&nbsp;Christian Brice Dantio Nguela,&nbsp;Haijian Tong,&nbsp;Anna Lo Presti,&nbsp;Markus Antonietti,&nbsp;Horace Manga Ngomo and Christian Mark Pelicano*,&nbsp;","doi":"10.1021/acssuschemeng.4c0802110.1021/acssuschemeng.4c08021","DOIUrl":null,"url":null,"abstract":"<p >Herein, we introduce a controllable acid activation method of sulfur-doped carbon nitride (CN<sub>T</sub>) to enhance its photodegradation efficiency for indigo carmine. We establish that the surface functionalization of sulfur-doped carbon nitride using a diluted H<sub>2</sub>SO<sub>4</sub>/H<sub>2</sub>O<sub>2</sub> aqueous solution treatment extends visible light absorption, promotes charge separation, and enables improvement in photocatalytic activity. More specifically, the optimal sample (E<sub>1</sub>-CN<sub>T</sub>) exhibits a remarkable indigo carmine degradation performance of 96.27% (at 25 ppm) within 40 min under UV light irradiation, comparable to the top-performing photocatalysts reported in the literature. The apparent first-order rate constants of E<sub>1</sub>-CN<sub>T</sub> are 2× and 3.6× higher than those of unmodified CN<sub>T</sub> and bulk CN from melamine, respectively. This work provides new insights into designing simple, affordable, highly active, and metal-free materials toward sustainable environmental remediation.</p><p >Acid activation of sulfur-doped carbon nitride significantly improves its photocatalytic efficiency for degrading indigo carmine, contributing to sustainable environmental practices.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"12 45","pages":"16809–16816 16809–16816"},"PeriodicalIF":7.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssuschemeng.4c08021","citationCount":"0","resultStr":"{\"title\":\"Controllable Acid Activation of Sulfur-Doped Carbon Nitride Enables Enhancement in Photocatalytic Indigo Carmine Degradation Performance\",\"authors\":\"Serge Arnold Benedoue,&nbsp;Julius Nsami Ndi,&nbsp;Min Ge,&nbsp;Zhihong Tian,&nbsp;Christian Brice Dantio Nguela,&nbsp;Haijian Tong,&nbsp;Anna Lo Presti,&nbsp;Markus Antonietti,&nbsp;Horace Manga Ngomo and Christian Mark Pelicano*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.4c0802110.1021/acssuschemeng.4c08021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Herein, we introduce a controllable acid activation method of sulfur-doped carbon nitride (CN<sub>T</sub>) to enhance its photodegradation efficiency for indigo carmine. We establish that the surface functionalization of sulfur-doped carbon nitride using a diluted H<sub>2</sub>SO<sub>4</sub>/H<sub>2</sub>O<sub>2</sub> aqueous solution treatment extends visible light absorption, promotes charge separation, and enables improvement in photocatalytic activity. More specifically, the optimal sample (E<sub>1</sub>-CN<sub>T</sub>) exhibits a remarkable indigo carmine degradation performance of 96.27% (at 25 ppm) within 40 min under UV light irradiation, comparable to the top-performing photocatalysts reported in the literature. The apparent first-order rate constants of E<sub>1</sub>-CN<sub>T</sub> are 2× and 3.6× higher than those of unmodified CN<sub>T</sub> and bulk CN from melamine, respectively. This work provides new insights into designing simple, affordable, highly active, and metal-free materials toward sustainable environmental remediation.</p><p >Acid activation of sulfur-doped carbon nitride significantly improves its photocatalytic efficiency for degrading indigo carmine, contributing to sustainable environmental practices.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"12 45\",\"pages\":\"16809–16816 16809–16816\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acssuschemeng.4c08021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c08021\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c08021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们介绍了一种可控的酸活化掺硫氮化碳(CNT)的方法,以提高其对靛蓝胭脂红的光降解效率。我们发现,使用稀释的 H2SO4/H2O2 水溶液对掺硫氮化碳进行表面功能化处理,可以延长可见光吸收时间,促进电荷分离,提高光催化活性。更具体地说,最佳样品(E1-CNT)在紫外光照射下,40 分钟内的靛蓝胭脂红降解率达到 96.27%(25 ppm 时),与文献报道的性能最佳的光催化剂不相上下。E1-CNT 的表观一阶速率常数分别比未改性 CNT 和三聚氰胺中的块状 CN 高 2 倍和 3.6 倍。酸活化掺硫氮化碳可显著提高其降解靛蓝胭脂红的光催化效率,从而促进可持续环境实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllable Acid Activation of Sulfur-Doped Carbon Nitride Enables Enhancement in Photocatalytic Indigo Carmine Degradation Performance

Herein, we introduce a controllable acid activation method of sulfur-doped carbon nitride (CNT) to enhance its photodegradation efficiency for indigo carmine. We establish that the surface functionalization of sulfur-doped carbon nitride using a diluted H2SO4/H2O2 aqueous solution treatment extends visible light absorption, promotes charge separation, and enables improvement in photocatalytic activity. More specifically, the optimal sample (E1-CNT) exhibits a remarkable indigo carmine degradation performance of 96.27% (at 25 ppm) within 40 min under UV light irradiation, comparable to the top-performing photocatalysts reported in the literature. The apparent first-order rate constants of E1-CNT are 2× and 3.6× higher than those of unmodified CNT and bulk CN from melamine, respectively. This work provides new insights into designing simple, affordable, highly active, and metal-free materials toward sustainable environmental remediation.

Acid activation of sulfur-doped carbon nitride significantly improves its photocatalytic efficiency for degrading indigo carmine, contributing to sustainable environmental practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信